
NATIONAL AND KAPODISTRIAN UNIVERSITY OF ATHENS

DOCTORAL THESIS

Scalable Semi-Supervised Structure Learning
for Event Recognition

Author:

Evangelos MICHELIOUDAKIS

A thesis submitted in fulfilment of the requirements

for the degree of Doctoral of Philoshophy in the

National and Kapodistrian University of Athens

Department of Informatics and Telecommunications

in collaboration with the

National Centre for Scientific Research “Demokritos”

Institute of Informatics and Telecommunications

Software and Knowledge Engineering Laboratory

December 2023

https://en.uoa.gr
https://users.iit.demokritos.gr/~vagmcs/
https://en.uoa.gr
https://www.di.uoa.gr/en
http://www.demokritos.gr
http://www.iit.demokritos.gr
https://www.skel.ai

ADVISORY COMMITEE

Georgios Paliouras, Researcher A, NCSR “Demokritos”

Alexander Artikis, Associate Professor, Univ. of Piraeus

Sergios Theodoridis, Professor, NKUA

EXAMINATION COMMITEE

Sergios Theodoridis

Professor, NKUA

Alexander Artikis

Associate Professor, Univ. of Piraeus

Panagiotis Stamatopoulos

Assistant Professor, NKUA

George Vouros

Professor, Univ. of Piraeus

Georgios Paliouras

Researcher A, NCSR “Demokritos”

Panagiotis Rontogiannis

Professor, NKUA

Manolis Koumparakis

Professor, NKUA

EXAMINATION DATE: December 11, 2023

https://users.iit.demokritos.gr/~paliourg
https://users.iit.demokritos.gr/~a.artikis
https://cgi.di.uoa.gr/~stheodor

“The question of whether computers can think

is like the question of whether submarines can swim.”

— Edsger W. Dijkstra

Abstract

Symbolic event recognition systems often rely on knowledge bases of event defini-
tions, expressed in first-order logic, to detect event occurrences over time. Logical
frameworks for representing and reasoning about events provide robust temporal
reasoning and enable the automated discovery of event rules via Inductive Logic
Programming (ILP). Although existing structure learning approaches ease the
discovery of such rules in noisy data streams, they assume the existence of fully-
labelled training sequences, which is unrealistic for most real-life applications.
In this thesis we address the issue of scalable semi-supervised learning for event
recognition. We propose two novel techniques for inferring the missing supervi-
sion on training sequences and enable learning event rules in the Event Calculus.
First, we propose SPLICE, a framework that employs a graph-based method to
derive labels for unlabelled data, based on their distance to their labelled coun-
terparts. In order to adapt the graph-based method to first-order logic, we use
a suitable structural distance for measuring the distance between sets of logi-
cal atoms. The labelling process is achieved online (single-pass) by means of a
caching mechanism and the Hoeffding bound for filtering contradicting examples.
However, SPLICE labelling may be compromised since its structural measure is ag-
nostic of the feature semantics. Moreover, there is no guarantee about the quality
of the labelling found in the local graphs that are built as the data stream in. To
that end, we also propose SPLICE , a second method that improves upon SPLICE

by employing a hybrid measure combining an optimised structural distance, and
a data-driven one. The former is guided by feature selection, while the latter is
a mass-based dissimilarity. In addition, SPLICE improves the graph construction
process, by storing a synopsis of the past, in order to achieve more informed
labelling on the local graphs. We evaluate our approach on the task of complex
event recognition by using a benchmark dataset for human activity recognition,
a dataset for maritime monitoring, as well as a dataset for fleet management.

Περίληψη

Η συμβολική αναγνώριση γεγονότων συχνά βασίζεται σε μια βάση γνώσης, η οποία

περιέχει κανόνες εκφρασμένους σε λογική πρώτης τάξης, και χρησιμοποιείται για την

αναγνώριση γεγονότων σε ροές δεδομένων. Τέτοια λογικά συστήματα αναγνώρισης

γεγονότων προσφέρουν εύρωστο χρονικό συμπερασμό και επιτρέπουν την αυτόματη

κατασκευή κανόνων με τη χρήση Επαγωγικού Λογικού Προγραμματισμού. Παρότι οι

υπάρχουσες μέθοδοι για την εκμάθηση σχεσιακών δομών διευκολύνουν την εύρεση

τέτοιων κανόνων σε θορυβώδεις ροές δεδομένων, υποθέτουν ότι τα δεδομένα εκμάθη-

σης είναι πλήρως επισημειωμένα, πράγμα το οποίο είναι μη ρεαλιστικό σε πραγματικές

εφαρμογές. Σε αυτή τη διατριβή επιχειρούμε να αντιμετωπίσουμε το πρόβλημα της

κλιμακούμενης ημί-επιπλεπόμενης μάθησης για αναγνώριση γεγονότων. Προτείνου-

με δύο καινούργιες τεχνικές για να συμπεραίνουμε τις απούσες επισημειώσεις στα

δεδομένα εκπαίδευσης και να μαθαίνουμε κανόνες εκφρασμένους σε Λογισμό Γεγο-

νότων. Το SPLICE είναι ένα σύστημα το οποίο χρησιμοποιεί γράφους για να εξάγει

επισημειώσεις για τα μη-επισημειωμένα δεδομένα με βάση τις αποστάσεις τους από τα

αντίστοιχα επισημειωμένα. Για να εφαρμόσουμε τη μέθοδο αυτή σε λογική πρώτης

τάξης, χρησιμοποιούμε μια απόσταση για σχεσιακές δομές η οποία μετράει την α-

πόσταση μεταξύ λογικών ατόμων. Η διαδικασία της επισημείωσης των δεδομένων

γίνεται σε ένα πέρασμα με χρήση ενός μηχανισμού μνήμης και του Hoeffding bound
για να φιλτράρουμε αντικρουόμενα παραδείγματα. Παρόλα αυτά το SPLICE, βασίζεται

σημαντικά στη μετρική που υπολογίζει τις αποστάσεις μεταξύ των λογικών ατόμων.

Επιπλέον, δεν υπάρχει καμία εγγύηση για την ποιότητα των λύσεων στους τοπικούς

γράφους που κατασκευάζονται από τη ροή δεδομένων. Συνεπώς, προτείνουμε μια δε-

ύτερη μέθοδο, το SPLICE , η οποία χρησιμοποιεί μια υβριδική απόσταση που συνδυάζει

μια βελτιστοποιημένη απόσταση σχεσιακών δομών και μια απόσταση που βασίζεται

στη μάζα των δεδομένων. Η πρώτη καθοδηγείται από μια επιλογή χαρακτηριστικών,

ενώ η δεύτερη στην εκτίμηση της μάζα των δεδομένων. Επιπλέον, το SPLICE βελτι-

ώνει την κατασκευή του γράφου με το να αποθηκεύει μια σύνοψη του παρελθόντος

ώστε να πετύχει καλύτερες επισημειώσεις στους τοπικούς γράφους. Αξιολογούμε τις

μεθόδους μας σε εφαρμογές σύνθετης αναγνώρισης γεγονότων χρησιμοποιώντας ένα

σύνολο δεδομένων για αναγνώριση ανθρώπινων δραστηριοτήτων, ένα για αναγνώριση

ναυτιλιακών συμβάντων και ένα για τη διαχείριση εμπορικών οχημάτων.

Acknowledgements

Pursuing a PhD is a challenging endeavour. You need devotion and hard work to succeed,

since the journey is long and involves a lot of failures. One must learn to be patient

and thorough in order to tackle the research problems that often seem hopeless of

solving. Part of the road also involves learning how to communicate your thoughts and

ideas to other people, understanding the significance of answering why and managing

disappointment. However, the most important lesson I received is to be humble. The

more I learn, the more I realise that our knowledge is far less than we assume, or to

quote the words of the Greek philosopher Socrates “έν οίδα, ότι ουδέν οίδα”.

The moments of my doctoral journey have been shared with colleagues, friends and

family to which I am deeply grateful for their support. First and foremost, I would like

to thank my supervisors Dr. Georgios Paliouras and Dr. Alexander Artikis from NCSR

“Demokritos”, for their guidance and limitless encouragement during the course of my

research. I really appreciate all the valuable discussions, the ideas, the willingness to

share their knowledge, and the patience they always show in my mistakes. Their help

has proved indispensable. I am also very thankful to Prof. Sergios Theodoridis from

NKUA that made this doctoral thesis possible.

During my PhD I had the privilege of working on several research projects, get acquainted

with interesting ideas and collaborate with respectable researchers. Nikos Katzouris and

Elias Alevizos, my closer colleagues from the Complex Event Recognition group, deserve

special credit for sharing ideas, discussions and many funny moments. I would also like

to thank my friend and colleague Anastatios Skarlatidis. Although he is no longer part

of the group and he had no involvement in my PhD, he is a person that greatly inspired

me and taught me a lot of things. I surely own the quality of my work to all of them.

I would also like to thank all my friends for being there, providing emotional support

and time well-wasted. I am lucky enough, since many of them are computer engineers

themselves and were happy to listen, discuss the difficulties and offer advice.

I am very lucky to have the parents that I do. I owe everything that I have accomplished

to them and this cannot be justified by words. I also wish to thank my brother Nikos and

my sister Chrysanthi for they are both a never-ending source of love and encouragement.

Last, but by no means least, I am deeply thankful to my beloved Aspasia for her endless

affection and patience. Since I met her, she has been by my side, constantly supporting

my failures and celebrating my successes. We have shared together my doctoral journey

that she made so much easier. I believe that she deserves credit for this work, so it seems

only natural that I dedicate my PhD to her.

Evangelos Michelioudakis

Athens, December 2023

Dedicated to my beloved Aspasia.

Contents

Abstract iii

Acknowledgements vii

Contents xi

List of Figures xv

List of Tables xix

1 Introduction 17

1.1 Symbolic Complex Event Recognition 18

1.2 Motivation . 19

1.3 Thesis Contribution . 21

1.3.1 Semi-Supervised Online Learning for Complex Event Recog-

nition . 21

1.3.2 Semi-Supervised Online Learning Combining Structure and

Mass-based Predicate Similarity 22

1.3.3 Publications . 24

1.4 Thesis Outline . 25

2 Background 27

2.1 Event Calculus and Structure Learning 27

2.2 Graph-based Semi-Supervised Learning 29

2.2.1 Harmonic Function Method 29

2.2.2 Temporal Label Propagation 31

2.3 Distance between Herbrand Interpretations 32

xii Contents

2.4 Large Margin Nearest Neighbour Metric Learning 34

2.5 Mass-based Dissimilarity . 37

2.6 Related Work . 38

2.6.1 Learning Complex Event Rules in the Event Calculus . . . 39

2.6.2 Semi-Supervised Learning 40

2.6.3 Distances for Relational Data 43

2.6.4 Feature Selection . 45

2.7 Summary . 46

3 SPLICE: Semi-Supervised Learning for Complex Event Recognition 47

3.1 Data Partitioning . 49

3.2 Label Caching . 51

3.3 Graph Construction . 54

3.4 Supervision Completion . 55

4 SPLICE : Semi-Supervised Learning

Combining Structure and Mass-based Predicate Similarity 59

4.1 Large-Margin Feature Selection for Logical Predicates 61

4.2 Mass Dissimilarity for Logical Predicates 64

4.3 Robust Graph Construction and Labelling 67

5 Experimental Study 69

5.1 Description of Datasets . 69

5.2 Experimental Setup . 71

5.3 Evaluation on Activity Recognition 72

5.4 Evaluation on Maritime Monitoring 74

5.5 Evaluation on Fleet Management 78

5.6 Discussion . 80

5.6.1 Ablation Study . 80

5.6.2 Batch Size Impact . 82

5.7 Summary . 83

6 Conclusions and Future Work 85

Contents xiii

6.1 Conclusions . 86

6.2 Future Work . 87

Bibliography 89

Symbols 105

List of Figures

1.1 An illustration of the event recognition process. The CER system

constantly monitors the input stream of SDEs for matches of the

underlying CE patterns. The output of the system is a stream of

recognised CEs (as per Skarlatidis [2014]). 19

1.2 The online semi-supervised learning process. The machine learn-

ing system consumes the semi-supervised streams of SDEs (de-

noted by the grey-out annotation batches), in order to enhance

and update the knowledge base of the CE patterns. 20

2.1 The neighbourhood of xi before/after optimisation. A distance

metric is learned so that: (i) target neighbours (yellow circles) lie

within a small radius from xi; (ii) impostors (blue diamond, red

square) lie outside this smaller radius by a finite margin. Arrows

indicate pull/push operations (after [Weinberger and Saul, 2009]). 35

3.1 The Semi-Supervised Online Structure Learning (SPLICE) procedure. 48

xvi List of Figures

3.2 Data partitioning into examples. Each example contains a ground

query atom, either labelled or unlabelled, as well as a set of true

ground evidence atoms that relate to the query atom through their

constants. 49

4.1 The SPLICE procedure. 60

4.2 Path selected by a random tree from the subsumption lattice. . . 66

5.1 Process of creating labelled sequences from train sets. Purple and

gray dots represent train and test sequences respectively. Green

dots represent fully labelled sequences, while red dots represent

completely unlabelled ones. 71

5.2 F1-score of supervision completion on meet (left) and move (right)

as supervision increases. In the first scenario, supervision arrives

uniformly at random (top), while in the second one is provided

only at the beginning of the sequence (bottom). The notation ds

and dbh refers to the structural and hybrid distances respectively. . 73

5.3 Runtime performance of supervision completion on meet (left)

and move (right) as supervision increases. The runtime is macro-

averaged over all samples. In the first scenario, supervision arrives

uniformly at random (top), while in the second one is provided

only at the beginning of training (bottom). We do not present the

runtime of ILASP-NB here, since it is much higher than SPLICE

(≈ 400 seconds) and the scaling does not help the discussion of

the results. 74

List of Figures xvii

5.4 Structure learning using OLED on meet (left) and move (right) as

supervision increases. In the first scenario, supervision arrives

uniformly at random (top), while in the second one it is provided

at the beginning of the training sequence (bottom). 75

5.5 F1-score of supervision completion on pilotOps (left) and rendezVous

(right) as supervision increases. 75

5.6 Runtime of supervision completion on pilotOps (left) and rendezVous

(right) as supervision increases. The runtime is macro-averaged

over all samples. 76

5.7 Structure learning on pilotOps (left) and rendezVous (right) as

supervision increases. In the first scenario, supervision arrives

uniformly at random (top), while in the second one is provided at

the beginning of the training sequence (bottom). 77

5.8 F1-score of supervision completion on nonEconomicDriving (left)

and dangerousDriving (right) as supervision increases. 78

5.9 Runtime of supervision completion on nonEconomicDriving (left)

and dangerousDriving (right) as supervision increases. The run-

time is macro-averaged over all samples. 78

5.10 Structure learning on nonEconomicDriving (left) and dangerousDriving

(right) as supervision increases. In the first scenario, supervision

arrives uniformly at random (top), while in the second one, super-

vision is provided only at the beginning of the training sequence

(bottom). 79

List of Tables

5.1 Comparison of SPLICE on meet and move using the simple struc-

tural distance (ds) and the hybrid distance (dbh). 81

5.2 Comparison of SPLICE on pilotOps and rendezVous, using the

simple structural distance (ds) and the hybrid distance (dbh). . . . 81

5.3 F1-score as batch size increases for meet and move CEs: SPLICE/SPLICE . 82

5.4 F1-score of pilotOps, rendezVous for varying batch sizes: SPLICE/SPLICE . 82

1 | Introduction

“The only reason for time is so that everything doesn’t happen at once.”
— Albert Einstein

Today’s information systems collect, share and process a significant amount of
data that stream-in from a plethora of sources. Probes and sensors are deployed
everywhere, from large-scale industrial infrastructures to hand-held physical
devices, capture all kinds of information from the environment and monitor for
desirable conditions. For instance, transport vehicles moving on-land and vessels
sailing at sea report information about their location and operational status, using
accelerometers, gyroscopes, GPS devices, etc. Sensitive areas employ surveillance
cameras to record video footage for security purposes. More than ever, daily
human activities generate huge amounts of media content, emails, social media
posts, and even physiological data1. As time evolves, all these data flowing
quietly across information systems, can be aggregated and correlated in order to
become a source of significant knowledge that may unveil important insights. For
example, in video surveillance, the recorded video frames may indicate that an
accident may have happened, or in a computer network an abrupt increase in the
volume of incoming network packets may point to a possible distributed denial
of service attack. Most of these data, accompanied by their temporal occurrences,
can be represented by events.

An event usually refers to something that happens and constitutes a fundamental
concept for representing temporal pieces of information. It can be anything, from
a simple sensor reading, like a temperature measurement, or a GPS coordinate to
structured content like a financial transaction, a video frame and even complex
things like an act of piracy occurring at sea. Events can be instantaneous or
durative, persisting over time, and are often related to other events in several
ways, e.g., temporally, spatially, causally, etc. More importantly, these related

1It is estimated that 1.7 MiB of information is created every second by every human being on the planet.

18 Introduction

events tend to define useful patterns. For instance, in a sequence of video frames,
the events that collectively represent some people standing still at the same time
and in a close distance to each other, may altogether capture a situation that
those particular persons are meeting in a public area.

The automatic detection of such event patterns in data streams has been facili-
tated by complex event processing [Etzion and Niblett, 2010], a set of methodolo-
gies and techniques designed for analysing, filtering and aggregating multiple
independent sources of information, in order to discover and report these inter-
esting events in real-time.

1.1 Symbolic Complex Event Recognition

Symbolic complex event recognition, or “event pattern-matching” [Luckham, 2002],
is a tool of complex event processing that aims to detect event patterns in tempo-
ral data streams. These methods have received increasing attention in a variety of
applications, including activity recognition [Rodríguez et al., 2013; Turaga et al.,
2008] from video [Brendel et al., 2011; Prapas et al., 2018] or sensor readings
[Gayathri et al., 2017], computer network attacks [Dousson and Maigat, 2007],
distributed diagnosis of web-services [Guillou et al., 2008], traffic and transport
management [Artikis et al., 2012; Tsilionis et al., 2019], fraud detection in online
transactions [Schultz-Møller et al., 2009], business process management [Mon-
tali et al., 2013], medical applications, such as recognition of cardiac arrhythmias
[Callens et al., 2008], epidemic spread [Chaudet, 2006], patient monitoring [Fal-
cionelli et al., 2019; Kafali et al., 2017], maritime monitoring [Patroumpas et al.,
2015; Pitsikalis et al., 2019], daily assisted living [Kim et al., 2019; Loreti et al.,
2019; Storf et al., 2009], and the Internet of Things [Wang et al., 2013b].

Symbolic complex event recognition (CER) systems [Cugola and Margara, 2012],
as depicted in Figure 1.1, consume input sequences of simple derived events
(SDEs), match them against a knowledge base of high-level event patterns – de-
fined on some formal language [Grez et al., 2019, 2020] – and recognise complex
events (CEs) of interest. Each SDE usually corresponds to a single time-stamped
observation and their occurrence is assumed not to depend on other events. Con-
sider, for instance, a video tracking system detecting that a person is walking, by
processing the raw video frames, and producing a walking SDE per frame. On
the contrary, CEs can only happen when other related events (SDE or CE) have
happened under some specific constraints (e.g., temporal and spatial relations).
For example, a number of people are moving together. Therefore, CE recognition
is associated with the occurrence of various SDEs and/or other CEs, involving

Introduction 19

INPUT I RECOGNITION I OUTPUT �

Event
Recognition

System

CE Definitions

Streams of SDEs

.

.

Recognised CEs

.

.

FIGURE 1.1: An illustration of the event recognition process. The CER system constantly
monitors the input stream of SDEs for matches of the underlying CE patterns. The output
of the system is a stream of recognised CEs (as per Skarlatidis [2014]).

multiple entities, e.g., people, vehicles or other objects, etc. CEs, are therefore,
relational structures over other sub-events, either CE or SDE. The knowledge
base of the CE patterns is either predefined by domain experts or learned from
data and captures knowledge of significant CE for the target application.

1.2 Motivation

Event recognition systems that adopt a logic-based approach [Artikis et al., 2012],
can naturally and compactly represent relational CE structures. They employ
first-order temporal logical formalisms, such as the Event Calculus [Kowalski and
Sergot, 1986], to model the effects and duration of event occurrences and rely
on logical inference to perform the event recognition. They utilise formal and
declarative semantics, in contrast to other CER systems that exhibit informal,
procedural semantics, which is crucial in order to trace and validate the origins
and effects of the recognised complex events [Paschke and Kozlenkov, 2009].
Moreover, they enable reasoning over complex relations among entities and can
exploit background knowledge provided by domain experts, contrary to non-
logic-based approaches. Examples of such CER systems include SAGE [Broda
et al., 2009], ETALIS [Anicic et al., 2012], and RTEC [Artikis et al., 2015].

Typically, in an event recognition system, the event specification patterns are
manually curated by human domain experts. Since CEs are defined as relational
structures over actors and objects involved in an event, their manual derivation
can be an expensive, time-consuming and error prone task [Artikis et al., 2010].
In addition, event recognition applications usually operate in noisy data streams
of significant volume and velocity, see [Giatrakos et al., 2020] for an overview,

20 Introduction

which further renders the synthesis of such relational dependencies unrealistic.
To that end, machine learning methods for automatically constructing the struc-
ture of the CEs in a single pass over a data stream are essential [Dries and Raedt,
2009; Gama, 2010; Srinivasan and Bain, 2017].

Although learning logical theories for CER remains a challenging task, a cou-
ple of online relational learners have been proposed for the automated curation
of CE patterns under uncertainty [Katzouris et al., 2016, 2018; Michelioudakis
et al., 2016b], in the form of Event Calculus theories [Kowalski and Sergot, 1986;
Mueller, 2008a] or probabilistic variants [Skarlatidis et al., 2015a,b]. These ap-
proaches stem from Inductive Logic Programming (ILP) [Fürnkranz et al., 2012;
Muggleton and Raedt, 1994; Raedt, 2008] and Statistical Relational Learning
(SRL) [Getoor and Taskar, 2007], fields that employ machine learning for logic
programming and graphical models in order to provide tools and algorithms for
learning logical theories from relational noisy data.

INPUT I CE DEFINITION CONSTRUCTION J INPUT

Machine

Learning

System

CE Definitions

Streams of SDEs

.

.

Annotated CEs

.

.

FIGURE 1.2: The online semi-supervised learning process. The machine learning system
consumes the semi-supervised streams of SDEs (denoted by the grey-out annotation
batches), in order to enhance and update the knowledge base of the CE patterns.

Although these techniques have facilitated the automated discovery of multi-
relational dependencies in noisy environments, nonetheless, all of them assume
that a fully labelled training sequence arrives for processing, which of course is an
unrealistic assumption. Usually, either sparse, infrequent, labels become available
on-stream or, more commonly, they are provided at the beginning of learning
in the form of historical data. Figure 1.2 depicts the online semi-supervised
structure learning process. The machine learning system consumes the streams
of SDEs, as well as, the incomplete (semi-supervised) streams of CEs, usually in
small, time-consecutive batches of data, called micro-batches, in order to construct
and update the knowledge base of the CE patterns.

Introduction 21

However, learning Event Calculus theories, or even simpler logical rules, using
semi-supervised approaches and ILP remains a challenging and unexplored task.
Existing work on semi-supervised learning assumes numerical data that are avail-
able at once during learning [van Engelen and Hoos, 2020]. On the other hand,
only a couple of approaches have attempted to combine variations of co-training
to ILP systems [Li and Guo, 2011; Soonthornphisaj and Kijsirikul, 2004]. These
systems are only able to learn from small datasets and do not scale to the volumes
of data collected in event recognition.

Therefore, the motivation behind this thesis is the development of scalable al-
gorithms for the semi-supervised learning of CE patterns, in the form of Event
Calculus theories, from temporal data. Throughout the thesis we focus on learn-
ing CE patterns that are represented as first-order logic rules, thus, we henceforth
refer to them as CE rules.

1.3 Thesis Contribution

In this thesis, we focus on scalable semi-supervised learning methods for the
automated construction of event rules in the form of Event Calculus theories,
and present two graph-based techniques SPLICE and SPLICE for inferring the
missing supervision. To demonstrate the benefits of our proposed approaches,
we present an experimental study on various aspects of these approaches using
real-life event recognition datasets.

1.3.1 Semi-Supervised Online Learning for Complex Event Recognition

In order to address the issue of incomplete supervision, we propose SPLICE,
a novel method for inferring the missing labels, using graph-based techniques
[Zhu et al., 2009] and a distance function for first-order logic. Graph-based
methods to semi-supervised learning essentially derive labels for unlabelled data,
by computing their distance to their labelled counterparts. To that end, we adapt
the label propagation approach proposed by [Zhu et al., 2003] to first-order logic,
in order to operate over logical structures instead of numerical data. To do so, we
utilise a structural measure [Nienhuys-Cheng, 1997], designed to compute the
distance between logical atoms, and modify it using the Kuhn-Munkres algorithm
[Kuhn, 1955], in order to accurately compute the distance over sets of logical
atoms (Herbrand interpretations) that represent training examples.

22 Introduction

The proposed supervision completion method operates in an online fashion
(single-pass), by means of a caching mechanism that stores previously seen la-
bels for future usage. The Hoeffding bound [Hoeffding, 1963a], a statistical tool
that enables approximate globally-optimal decisions from locally-optimal ones,
is used to filter out contradicting labels that may compromise the labelling accu-
racy. The completed training data can be subsequently used by any supervised
structure learner to learn Event Calculus theories. In summary, the contributions
of SPLICE are the following:

• An online supervision completion method using a caching mechanism to
store labelled examples for future usage, and the Hoeffding bound to filter-
out contradicting examples that may compromise the overall accuracy.

• An adaptation of the label propagation technique to first-order logic, using
a structural distance for comparing logical atoms, and the Kuhn-Munkres
algorithm for improving the accuracy of the distance calculation.

• The first system for semi-supervised online structure learning, combining
online supervision completion and state-of-the-art structure learners, in
order to learn Event Calculus theories for CER applications.

1.3.2 Semi-Supervised Online Learning Combining Structure and
Mass-based Predicate Similarity

Although SPLICE aids the automated discovery of complex event rules in the pres-
ence of incomplete supervision, its distance measure may be compromised by
irrelevant features or imbalanced supervision, since it is agnostic of the feature in-
formation. Moreover, SPLICE does not provide any guarantee about the labelling
computed per micro-batch, compared to the one that would have been obtained
if all examples were available as a large graph. In fact, as the micro-batch size
gets smaller the harmonic solution produces labels that tend to be less dependent
on the unlabelled examples. It is interesting to note that, in the case of true
streaming (one example per micro-batch), the optimisation reduces to k-nearest
neighbour classification (Chapelle et al. 2006, Section 11.6).

To address these issues, we propose an improved hybrid distance measure that
combines the structural measure of SPLICE with a mass-based dissimilarity [Ting
et al., 2019], employing mass estimation theory [Ting et al., 2013] to quantify
the distance between examples of logical atoms. We further enhance the struc-
tural distance by performing feature selection, optimised for k-nearest neighbour
(kNN) classification. To that end, we adapt Large-Margin Nearest Neighbour

Introduction 23

(LMNN) [Weinberger and Saul, 2009], a state-of-the-art approach to metric learn-
ing, for the selection of informative logical predicates. Finally, in order to provide
guarantees about the online labelling, we use a technique proposed by Wag-
ner et al. [2018] that retains a synopsis of the graph in order to achieve more
informed labelling across the incoming micro-batches. Similar to SPLICE, the
completed training data can be subsequently used by any supervised structure
learner. The contributions of SPLICE are summarised as follows:

• The SPLICE online semi-supervised learning system that retains a graph
synopsis of temporally adjacent examples, in order to operate on large
training sequences, and learns explainable composite event rules in the
Event Calculus.

• SPLICE adapts a metric learning technique for feature selection over logical
atoms. The adapted technique is used as an informed structural distance
which accounts for irrelevant and noisy predicates (features) that may com-
promise accuracy.

• A hybrid distance measure that combines the informed structural distance
with a mass-based dissimilarity. The hybrid measure exploits both the la-
belled and unlabelled data to quantify the distance between examples of
logical atoms. The resulting measure is a semi-supervised metric learning
technique.

24 Introduction

1.3.3 Publications

In the course of this doctoral thesis the following articles have been published:

Central Publications:

• Michelioudakis E., Artikis A. and Paliouras G. (2023)
“Online Semi-Supervised Learning of Composite Event Rules by Combining
Structure and Mass-Based Predicate Similarity”
Machine Learning (accepted)

• Michelioudakis E., Artikis A. and Paliouras G. (2019)
“Semi-Supervised Online Structure Learning for Composite Event Recogni-
tion”,
Machine Learning, 108(7), pp. 1085–1110

Peripheral Publications:

• Michelioudakis E. et al. (2022)
“Parallel Model Exploration for Tumor Treatment Simulations”,
Computational Intelligence, 38(4), pp. 1379–1401

• Stavropoulos V., Michelioudakis E., Akasiadis C., Artikis A. (2022)
“Resource-Effective Exploration of Tumor Treatments with Multi-scale Simu-
lations”,
Hellenic Conference on Artificial Intelligence (SETN), pp. 1–10

• Katzouris N., Michelioudakis E., Artikis A., Paliouras G. (2018)
“Online Learning of Weighted Relational Rules for Complex Event Recogni-
tion”,
European Conference on Machine Learning and Knowledge Discovery in Databases
(ECML-PKDD), pp. 396–413

Introduction 25

1.4 Thesis Outline

The remainder of this thesis is organised as follows. In Chapter 2 we briefly
present the Event Calculus formalism and the OLED online learner for CER appli-
cations. Then, we provide the necessary background on graph-based methods for
semi-supervised learning, an appropriate distance function for logical structures
and a metric learning technique optimised for kNN classification. We also review
the literature on semi-supervised learning approaches, distances for first-order
logic, metric learning and feature subset selection methods. In Chapter 3 we
present SPLICE, our first proposed approach for online semi-supervised learn-
ing of CE rules, while in Chapter 4 we describe our second improved approach
(SPLICE) towards more robust supervision completion. In Chapter 5 we present
the experimental evaluation on real datasets for activity recognition, maritime
monitoring and fleet management. Finally, in Chapter 6, we discuss open issues,
provide directions for future research and conclude.

2 | Background

“The beginning is the most important part of the work.”
— Plato

This chapter provides the necessary background material for the thesis. We
begin by briefly presenting the Event Calculus formalism, as well as, the basic
functionality of the OLED system for learning CE rules from data streams. Then,
in Section 2.2 we present graph-based semi-supervised learning using Gaussian
Random Fields and an online variant based on a graph synopsis. In Section 2.3
we discuss a simple distance metric for comparing sets of logical atoms, while
in Sections 2.4 and 2.5 we present a metric learning technique method for kNN
classification and a data-driven dissimilarity based on mass estimation. The
chapter concludes with a review of the related work.

2.1 Event Calculus and Structure Learning

One way of representing the CE rules is by using the discrete Event Calculus
(DEC) [Mueller, 2008b]. The ontology of DEC consists of time-points, events and
fluents. The underlying time model is linear and represented by integers. A fluent
is a property whose value may change over time by the occurrence of particular
events. DEC includes the core domain-independent axioms of the Event Calculus,
which determine whether a fluent holds or not at a specific time-point. This
axiomatisation incorporates the common sense law of inertia, according to which
fluents persist over time, unless they are affected by an event occurrence. Event
occurrences are denoted by the HappensAt predicates, while HoldsAt predicates
denote whether a fluent holds. The InitiatedAt and TerminatedAt predicates
express the conditions in which a fluent is initiated or terminated, and are trig-
gered by HappensAt predicates. The core DEC axioms are defined as follows:

28 Background

HoldsAt(f, t+1)⇐
InitiatedAt(f, t)

(2.1)

HoldsAt(f, t+1)⇐
HoldsAt(f, t) ∧
¬TerminatedAt(f, t)

(2.2)

¬HoldsAt(f, t+1)⇐
TerminatedAt(f, t)

(2.3)

¬HoldsAt(f, t+1)⇐
¬HoldsAt(f, t) ∧
¬InitiatedAt(f, t)

(2.4)

Variables and functions start with a lower-case letter, while predicates start with
an upper-case letter. Axioms (2.1) and (2.2) express when a fluent holds, while
axioms (2.3) and (2.4) denote the conditions in which a fluent does not hold.
In CER, as we have formulated it here, the truth values of the composite events
(CEs) of interest — the ‘query atoms’ — are expressed by means of the HoldsAt

predicate. The incoming ‘simple, derived events’ (SDEs) are represented by
means of HappensAt, while any additional contextual information is represented
by domain-dependent predicates. The SDEs and such contextual information
constitute the ‘evidence atoms’. This way, CEs may be defined by means of
InitiatedAt and TerminatedAt predicates, stating the conditions in which a CE
is initiated and terminated.

To learn DEC theories, online structure learning methods may be used in or-
der to learn efficiently from data streams. OLED [Katzouris et al., 2016] is an
online learner, based on Inductive Logic Programming [Muggleton and Raedt,
1994], constructing CE rules in the Event Calculus, in a single pass over the data
stream. OLED constructs rules by encoding each positive example, arriving at the
input stream, into a so-called bottom rule, i.e., a most specific rule of the form
α ← δ1 ∧ . . . ∧ δn, where α is an InitiatedAt or TerminatedAt atom and δi are
relational features (e.g., SDEs). A bottom rule is typically too restrictive to be
useful, thus, OLED searches the space of all possible rules that θ-subsume the
bottom rule. To that end, OLED starts from the most-general rule and gradually
specialises that rule, in a top-down fashion, by adding δi’s to its body and using
a rule evaluation function to assess the quality of each constructed specialisa-
tion. OLED’s single-pass strategy draws inspiration from the VFDT algorithm
(Very Fast Decision Trees) [Domingos and Hulten, 2000] which is based on the
Hoeffding bound, a statistical tool that allows to approximate the quality of a
rule on the entire input using only a subset of the data. Thus, in order to decide
between specialisations, OLED accumulates observations from the input stream
until the difference between the best and the second-best specialisation satisfies
the Hoeffding bound.

Although OLED facilitates the discovery of CE rules, it still is a supervised learner
and in the presence of unlabelled training examples it imposes a closed-world
assumption, that is, it assumes everything not known is false, i.e., a negative

Background 29

example. This assumption may seriously compromise the learning task or even
worse, render it impossible if very little supervision is available, which is a com-
mon scenario in real-life applications.

2.2 Graph-based Semi-Supervised Learning

Graph-based semi-supervised learning techniques [Chapelle et al., 2006; Zhu
et al., 2009] construct a graph G, whose vertices V represent the labelled and
unlabelled examples in a given dataset and the edges E reflect the pairwise
similarities of these examples. Given such a graph, [Blum and Chawla, 2001]
proposed to formulate the learning task as a graph mincut or st-cut problem. In
the binary case, the idea is to remove a minimal set of edges, so that the graph is
cut into two disjoint sets of vertices; one holding positive and the other negative
examples.

More formally, consider a training sequence consisting of l labelled instances
{(xi, yi)}li=1 and u unlabelled ones {xj}l+u

j=l+1. The labelled instances are pairs of
a label yi and a D-dimensional numerical feature vector xi = (x1, . . . , xD) ∈ RD

of input values, while the unlabelled ones are feature vectors with unknown label.
Each of these instances represents either a labelled or an unlabelled vertex of
the graph G. These vertices are then connected by undirected weighted edges
that encode their similarity according to a given distance function. Consequently,
the labelled vertices can be used to determine the labels of the unlabelled ones.
Once the graph is built, the task reduces into assigning y values to the unlabelled
vertices. Thus, the goal is to find a function f(x) ∈ {−1, 1} over the vertices,
where −1 is a negative label and 1 a positive one, such that f(xi) = yi for labelled
instances, and the cut size (the number of removed edges) is minimised in order
for the unlabelled ones to be assigned optimal values.

2.2.1 Harmonic Function Method

The mincut formulation proposed by Blum and Chawla [2001] can be repre-
sented as a regularised minimisation problem, by using an appropriate loss func-
tion, forcing the labelled vertices to retain their values and a regularisation factor
controlling the cut size. The cut size is the sum of the weights wij corresponding
to connected vertices i and j having different labels, and is computed as follows:

∑
i,j: f(xi)̸=f(xj)

wij =
l+u∑
i,j=1

wij

(
f(xi)− f(xj)

)2 (2.5)

30 Background

Equation (2.5) is an appropriate measure of the cut size, since it is affected only
by edges for which f(xi) ̸= f(xj). Note that if xi and xj are not connected, then
wij = 0 by definition, while if the edge exists and is not cut, then f(xi)− f(xj) =

0. Thus, the cut size is well-defined even when summing over all vertex pairs.
Assuming a loss λ per labelled vertex, the loss for labelled instances should be
zero if f(xi) = yi and λ otherwise. Thus, the loss function is defined as follows:

ℓ
(
xi, yi, f(xi)

)
= λ

(
yi − f(xi)

)2 (2.6)

Combining the loss function of Eq. (2.6) and the cut size, as expressed by
Eq. (2.5), as a regularisation factor, the regularised mincut problem is formu-
lated as follows:

min
f :f(x)∈{−1, 1}

λ
l∑

i=1

(
yi − f(xi)

)2
+

l+u∑
i,j=1

wij

(
f(xi)− f(xj)

)2 (2.7)

Note that Eq. (2.7) is an integer optimisation problem since f is constrained to
produce discrete values. Although efficient polynomial–time algorithms exist to
solve the mincut problem, still the formulation has a particular defect. There
could be multiple equally good solutions; a label may be positive in one of the
solutions, and negative in the rest.

An alternative formulation proposed by Zhu et al. [2003], overcomes these is-
sues, by modelling the regularisation term of Eq. (2.5), that is the cut-size, as
the energy function of a Gaussian Random Field. The minimisation of the en-
ergy function yields a probabilistic label assignment instead of discrete values.
Moreover, the minimum energy function has been shown to respect the harmonic
property, i.e., the value of f at each unlabelled vertex is the average of f of the
neighbouring vertices. In the context of semi-supervised learning, a harmonic
function is a function that retains the values of the labelled data and satisfies the
weighted average property on the unlabelled data:

f(xi) = yi, i = 1, . . . , l

f(xi) =

∑l+u
j=1wijf(xj)∑l+u

j=1wij

, i = l+1, . . . , l+u
(2.8)

The former part of formula (2.8) enforces that the labelled vertices retain their
values, while the latter averages the labels of all neighbouring vertices of a given
vertex, according to the weights of their edges. Therefore, the value assigned to

Background 31

each unlabelled vertex is the weighted average of its neighbours. The harmonic
function leads to the same solution of the problem as defined in Eq. (2.7), except
that f is relaxed to produce real values. The main benefit of the continuous
relaxation is that a unique optimal closed–form solution exists for f , in terms
of the Laplacian matrix of the graph. The drawback of the relaxation is that
the solution is a real value for each unlabelled example and does not directly
correspond to a label. This issue can be addressed by thresholding f at zero to
produce discrete labels or by class mass normalisation [Zhu et al., 2003].

2.2.2 Temporal Label Propagation

Traditional graph-based methods to semi-supervised learning [Zhu et al., 2009]
are offline, i.e., they assume that all labelled and unlabelled data are stored in
memory and thus are available during the optimisation that yields the harmonic
solution. However, that is an unrealistic assumption in online processing of data
streams.

Temporal Label Propagation (TLP) [Wagner et al., 2018] has been proposed
for fast-moving data streams. TLP stores a synopsis of the full history of the
stream in order to retain accumulated knowledge for both labelled and unlabelled
examples and incorporate it into subsequent optimisations. To that end, TLP
draws inspiration from the connection of label propagation to the theory of
electric networks [Zhu et al., 2003] and, in particular, the idea of the short-
circuit operator. The latter allows for a graph G to be encoded into a smaller (re-
weighted) graph, using only a subset Vτ of the actual vertices V , called terminals.
The reduced graph G⟨Vτ ⟩ is called short-circuit graph and it is known to retain
the global properties of G; most importantly, it preserves the effective weights
between every pair of terminal vertices. It is proved by Wagner et al. [2018] that
the aforementioned property allows for the harmonic solution to be preserved in
the synopsis graph encoded by the terminal vertices.

The Laplacian matrix of G⟨Vτ ⟩, required to obtain the harmonic solution, is given
by the Schur Complement [Dörfler and Bullo, 2013]. Since computing the Shur
Complement is as expensive as computing the harmonic solution on the entire
graph G, it provides no substantial speed-up for offline label propagation. How-
ever, in order for TLP to operate in a online fashion it computes G⟨Vτ ⟩ as a
sequence of local operations, called star-mesh transforms. The latter is a direct
consequence of the sequential property of Schur complement (Zhang 2005, The-
orem 4.10; Dörfler and Bullo 2013, Lemma III.1).

Definition 2.1. A star-mesh transformation on a vertex vo of a given graph
G=(V,E,W) is defined as follows:

32 Background

1. Star: Remove vo from G together with its set Eo of incident edges (vo, v) ∈
Eo.

2. Mesh: For every pair of vertices v, v′ ∈ V such that (vo, v) ∈ Eo and (vo, v
′) ∈

Eo, add the edge (v, v′) to E with weight wv,v′ = wv,vowvo,v′/degree(vo). If
(v, v′) is already in E, then add the new weight wv,v′ to its current weight.

The intuition is to apply star-mesh transforms as the data arrive for processing,
in order to continuously update the in-memory graph synopsis and deliver labels
for the incoming unlabelled examples by computing the harmonic solution on
the compressed graph. The star-mesh transforms remove edges by meshing
their weights with the remaining graph, so that the information provided by the
removed vertex vo remains encoded. Thus, the synopsis retains the ability to
compute the harmonic solution for the rest of the vertices as if vo was still in the
graph (Wagner et al. 2018, Theorem 4.1).

More formally, consider a (possibly infinite) data stream {vt}∞t=1 of incoming
example vertices that can be either labelled or unlabelled. TLP maintains a graph
G⟨Vτ ⟩ that stores the τ more recent unlabelled examples, in addition to a pair of
labelled vertex clusters containing all the labelled examples seen so far. When
a new unlabelled example arrives, TLP appends it to G⟨Vτ ⟩, connecting it to
the other vertices and “evicting” the oldest unlabelled example by applying the
star-mesh transform of Definition 2.1. In the simplest case, where a labelled
example arrives, this process just appends it to the appropriate cluster vertex,
t hus always maintaining τ + 2 vertices. The harmonic solution for each new
unlabelled example is then computed on G⟨Vτ ⟩ and it is provably equal to the
one computed on the entire training stream seen so far.

2.3 Distance between Herbrand Interpretations

Distance functions constitute an essential component of graph-based methods to
semi-supervised learning and in fact control the quality of the solution. In the
case of numerical data, the Euclidean distance, the Gaussian kernel or Radial
Basis Functions are common choices, as are matching distances for categorical
data. However, in the presence of relational data there is a need for structure-
based distances.

A technique proposed by Nienhuys-Cheng [1997] derives a distance for tree struc-
ture formalisms and thus provides a generic and natural approach for syntactic
comparison of ground logical atoms present in a Herbrand interpretation. The
distance function is defined on a set of expressions (namely ground atoms and

Background 33

ground terms), motivated by the structure and complexity of the expression, as
well as the symbols used therein. Let E be the set of all expressions in a first-
order language and R the set of real numbers. The distance d : E × E 7→ R over
expressions E , bounded by 1, is defined as follows:

d(e, e) = 0, ∀e ∈ E
d(p(s1, . . . , sk), q(t1, . . . , tr)) = 1, p ̸= q ∨ k ̸= r

d(p(s1, . . . , sk), q(t1, . . . , tk)) =
1
2k

∑k
i=1 d(si, ti), p = q

(2.9)

The first formula states that the distance of an expression to itself is zero. The
second one states that if predicates p and q are not identical, either in terms of
symbol or arity, then their distance is one, because they refer to different concepts.
We assume that the negation of a predicate p has always distance 1 from p, and
thus, it can be seen as a special case of the second formula, where q = ¬p. In case
p and q are identical, then their distance is computed recursively by the distance
of the terms therein. The distance d is also used by Nienhuys-Cheng [1997]
over subsets of E , i.e., sets of ground atoms, by means of the Hausdorff metric
[Hausdorff, 1962]. Informally, the Hausdorff metric is the greatest distance you
can travel between two sets of points, given for each point in one set the closest
point in other set.

The main drawback of the Hausdorff metric is that it does not capture much
information about the two sets as it is completely determined by the most distant
elements of the sets to their nearest neighbour in the other set [Raedt, 2008;
Ramon and Bruynooghe, 1998]. Thus, it may not be representative of the overall
dissimilarity of the two sets. Formally, given the sets E1 and E2, their Hausdorff
distance is computed as follows:

max{sup
x∈E1

inf
y∈E2

d(x, y), sup
y∈E2

inf
x∈E1

d(x, y)}

The overall distance for these sets would be represented by one of the pairwise
distances, namely the maximum distance among the minimum ones. Moreover,
this approach allows one element in one set to match with multiple elements in
the other set, which is undesirable because some elements may have no match
and thus may be ignored in the resulting distance value. As stated by Raedt
[2008], these limitations motivate the introduction of a different notion of match-
ing between two sets, which associates one element in a set to at most one other
element. Moreover, Ramon and Bruynooghe [1998] developed a framework
for distances over sets of logical atoms that uses a given mapping between the
elements in the sets to compute the overall distance among these elements.

34 Background

2.4 Large Margin Nearest Neighbour Metric Learning

Graph-based semi-supervised learning relies on the cluster assumption, that is,
similar examples should yield the same labelling, and thus the quality of the
distance measure is crucial to the quality of the labels. A common issue with
distance measures is that they are agnostic to the semantics of the input features.
As a consequence, their measurements may suffer in the presence of irrelevant
or noisy features.

Large-margin nearest neighbour metric learning (LMNN) [Weinberger and Saul,
2009] is a state-of-the-art technique that learns a distance pseudo-metric targeted
to kNN classification. Intuitively, LMNN attempts to increase the number of
training examples in a neighbourhood that share the same label. To that end, it
learns a linear transformation of the input space, on which it uses the Euclidean
distance. Euclidean distances can be parametrised by a matrix T that applies a
linear transformation to a data vector x as follows:

dT(xi,xj) = ||T(xi − xj)||22 (2.10)

Euclidean distances in the transformed space can equivalently be viewed as
Mahalanobis distances in the original space, by introducting a square matrix
M = TTT as follows:

dM(xi,xj) = (xi − xj)
TM(xi − xj) (2.11)

where the Euclidean distance can be recovered by setting M = I.

In order to optimise kNN classification, one seeks a linear transformation such
that nearest neighbours computed by the distance in Eq. (2.10) share the same
labels. Towards that goal, LMNN minimises a loss function consisting of two
terms, one which pulls target neighbours closer together, and another which
pushes differently labelled examples apart.

The first term penalises large distances between nearby instances that share the
same label and should be nearest neighbours. In terms of the transformation of
the input space, the sum of these squared distances is given by

εpull(M) =
∑

i,j∈N k
i

dM(xi,xj), (2.12)

Background 35

where N k
i denotes the set of target k-nearest neighbours of the instance xi. The

target neighbours of xi are those instances that we desire to be the closest to xi.
In the simplest case, the target neighbours may be all example instances having
the same label to xi.

The second term penalises small distances between differently labelled exam-
ples, called impostors. More formally, for an example xi with label yi and target
neighbour xj, an impostor is any example xl with label yl ̸= yi such that:

dM(xi,xl) ≤ dM(xi,xj) + 1 (2.13)

Before

margin

After

margin

xi

xj

xl

xi

xj

xl

FIGURE 2.1: The neighbourhood of xi before/after optimisation. A distance metric is
learned so that: (i) target neighbours (yellow circles) lie within a small radius from
xi; (ii) impostors (blue diamond, red square) lie outside this smaller radius by a finite
margin. Arrows indicate pull/push operations (after [Weinberger and Saul, 2009]).

In other words, an impostor xl is any differently labelled example that invades the
perimeter, plus unit margin, defined by any target neighbour xj of the example
xi. Therefore, the second term penalises violations of the above inequality as
follows:

εpush(M) =
∑

i,j∈N k
i

∑
l

(1− yil)
[
1 + dM(xi,xj)− dM(xi,xl)

]
+

(2.14)

where the indicator variable yil = 1, if and only if yi = yl, while yil = 0 otherwise.
Moreover, [z]+ = max(z, 0) denotes the standard hinge loss which monitors the
inequality of Eq. (2.13). If the inequality does not hold (i.e., the input xl lies
a safe distance away from xi), then the hinge loss has a negative argument

36 Background

and makes no contribution to the overall loss. The combined loss derived from
Eq. (2.12) and Eq. (2.14) is as follows:

ε(M) = (1− µ) εpull(M) + µ εpush(M) (2.15)

were the weighting parameter µ ∈ [0, 1] balances the two goals. Fig. 2.1 illustrates
the idea of LMNN. Before learning, an input xi may have both target neighbours
xj and impostors xl in its local neighbourhood. After optimisation, the impostors
are pushed outside the perimeter established by the target neighbours and a finite
margin exists between the perimeter and the impostors.

A variant of the LMNN technique, proposed in Chen et al. [2009], aims to learn
a vector m of feature weights, instead of a distance, by assuming that M is a
diagonal matrix with Mpp = mp ≥ 0, and mp is the weight of the pth feature.
Expanding the loss function depicted in Eq. (2.15):

ε(m) = (1− µ)
∑

i,j∈N k
i

dm(xi,xj)+

µ
∑

i,j∈N k
i

∑
l

(1− yil)
[
1 + dm(xi,xj)− dm(xi,xl)

]
+

(2.16)

The minimisation of the simplified objective function can be represented as a
linear optimisation problem with linear constraints:

minimise (1− µ)
∑

i,j∈N k
i

||m(xi − xj)||2 + µ
∑

i,l,j∈N k
i

(1− yil)ξijl

subject to (1) ||m(xi − xl)||2 − ||m(xi − xj)||2 ≥ 1− ξijl

(2) ξijl ≥ 0

(3) m ≥ 0

(2.17)

The non-negative slack variables ξijl mimic the effect of the hinge loss. In par-
ticular, each slack variable ξijl ≥ 0 is used to measure the amount by which the
margin inequality in Eq. (2.13) is violated. The optimal weight vector m⋆ cap-
tures the importance of each input feature instead of the covariance matrix of
the Mahalanobis distance.

Background 37

2.5 Mass-based Dissimilarity

Supervised learning approaches to feature selection usually require explicit or
implicit computation of the information/importance per feature using the labels
available in the training examples. However, in a semi-supervised learning task,
that information may be inaccurate due the limited number of labels. Therefore,
such criteria are not always reliable and their optimality guarantees suffer from
the fact that only very few training examples are used during the optimisation.

Ting et al. [2019] recently proposed a mass-based dissimilarity, that employs es-
timates of the probability mass to quantify the dissimilarity of two points rather
than the classic geometric models. Geometric approaches, such as the Euclidean
distance, depend on the geometric positions of data points alone to derive a mea-
surement. Instead mass dissimilarity measures mainly depend on the distribution
of the data. The intuition is that the distance of two points primarily depends on
the amount of probability mass in the region of space covering the two points.
Thus, two points in a dense region are less similar to each other than two points
of the same interpoint distance in a sparse region.

More formally, let H denote a hierarchical partitioning of a space Rq into a set of
non-overlapping regions that collectively span Rq. Moreover, each region in the
hierarchy corresponds to the union of its child regions. Let H(D) denote the set
of all such hierarchical partitions H that are admissible under a dataset D, such
that each non-overlapping region contains at least one point from D. Then the
smallest region covering a pair of points x,y ∈ Rq, with respect to a hierarchical
partitioning model H of Rq, is defined as:

R(x,y|H) = argmax
r∈H s.t.{x,y}∈r

depth(r;H)

where depth(r;H) is the depth of region r in the hierarchical model H.

Suppose that a dataset D is sampled from an unknown probability density func-
tion F . Then, the mass-based dissimilarity of x and y w.r.t. D is defined as
the expectation of the probability that a randomly chosen point would lie in the
region R(x,y|H):

m(x,y|D) = EH(D)

[
PF (R(x,y|H;D))

]

38 Background

where the expectation is computed over all possible partitionings H(D) of the
data. In practice, however, mass-based dissimilarity can be estimated from a
finite number of partitioning models Hp ∈ H(D), p = 1, . . . , T as follows:

m̃(x,y|D) =
1

T

T∑
p=1

P̃ (R(x,y|Hp;D)) (2.18)

where P̃ (R) = 1
|D|

∑
z∈D 1(z ∈ R) estimates the probability of the region R by

counting the data points in that region; and 1(·) denotes an indicator function.
Thus, the probability of the data falling into the smallest region containing both
x and y, is analogous to the shortest distance between them measured in the
geometric model.

In order to generate partitioning models H, a recursive partitioning scheme is
employed based on an Isolation Forest [Liu et al., 2008]. Isolation Forest is
essentially an ensemble of random trees, called Isolation Trees. Each Isolation
Tree is built independently using a subset of the data. At each internal node
of the tree a random split is made to partition the data at that node into two
non-empty subsets. The process is repeated recursively until either every data
point is isolated or a given maximum tree height is reached.

Subsequently the resulting Isolation Forest can be used to compute the mass-
based dissimilarity of Eq. (2.18). Since each Isolation Tree essentially represents
a partitioning Hp, the mass-based dissimilarity can be defined as:

m̃(x,y) =
1

T

T∑
p=1

|R(x,y|Hp)|
|D|

(2.19)

where |R(x,y|Hp)|
|D| estimates the probability of region R, as denoted by P̃ (R) in

Eq. (2.18). To compute Eq. (2.19), x and y are passed through each Isolation Tree
to find the mass of the deepest node containing both x and y i.e.,

∑
i |R(x,y|Hp)|.

Finally, m̃ is the mean of these masses over the T trees.

2.6 Related Work

In this section we discuss relevant work from the literature. The discussion is
divided into four parts. In the first part (Section 2.6.1), we overview learning
systems, like OLED, that attempt to learn CE rules in the form of Event Calculus
theories. In the second part (Section 2.6.2), we discuss existing propositional

Background 39

semi-supervised learning methods and argue against their application for super-
vised learning of CE rules from data streams. In the third part (Section 2.6.3)
we present existing relational distances that can be potentially used for graph-
based semi-supervised learning, while in the final part (Section 2.6.4), we discuss
feature selection and metric learning techniques and their applications to semi-
supervised learning.

2.6.1 Learning Complex Event Rules in the Event Calculus

Learning CE rules from sensory input is a challenging task that is receiving in-
creasing attention in the literature, since it constitutes a limiting factor to CER
applications. Some recent approaches attempt to learn propositional CE rules
in the form of a domain-specific language [Bruns et al., 2019; Margara et al.,
2014; Mousheimish et al., 2017]. However, in order to learn relational CE rules
in the form of Event Calculus (EC) theories, structure learning techniques are
employed, stemming from Inductive Logic Programming (ILP) [De Raedt and De-
haspe, 1997; Quinlan, 1990] and probabilistic graphical models (PGM) [Gogate
et al., 2010; Lee et al., 2006; McCallum, 2003; Pietra et al., 1997].

Although several ILP approaches have addressed the problem of learning normal
logic programs, see [Katzouris, 2017] for an overview, most of them cannot learn
EC theories, since they do not support non-Observational Predicate Learning
[Muggleton, 1995] and restrict the usage of Negation as Failure. Ray [2009]
proposed XHAIL, a technique that can learn EC logic programs, but does not scale
to large datasets. Although Katzouris et al. [2015] extended XHAIL to operate in
an incremental way, in order to efficiently learn EC theories from data that arrive
over time, nevertheless, ILED is still inappropriate for real-life CER applications
because it cannot handle noisy data. The ILASP system [Law et al., 2016, 2018]
overcomes the shortcomings of ILED and learns EC theories from noisy data, by
attaching penalties to uncovered examples and seeking a set of CE rules that
minimise the total cost of these examples. However, in most CER applications
data arrive at a high velocity, and thus learning methods should operate within
tight memory and time constraints, while both ILED and ILASP, may require
multiple passes over the training data.

OLED [Katzouris et al., 2016], as presented in Section 2.1, overcomes these
issues, by employing the Hoeffding bound [Hoeffding, 1963b], to approximate
the quality of the learned CE rules using only an available subset of the data,
thus enabling the efficient construction of EC theories in a single pass over the
data stream. Although OLED can efficient learn CE rules from noisy data streams,
it cannot perform probabilistic inference. To that end, Michelioudakis et al.

40 Background

[2016b] proposed OSLα, an approach based on Markov Logic Networks (MLN)
[Richardson and Domingos, 2006], that learns MLN−EC [Skarlatidis et al., 2015b]
theories — a probabilistic variant of DEC — by adapting the procedure of OSL

[Huynh and Mooney, 2011]. Although OSLα inherits the probabilistic properties
of MLNs, its structure learning component is sub-optimal, i.e., it tends to generate
large sets of clauses, many of which have low heuristic value, and therefore it is
much slower than OLED. An in-depth experimental comparison of these methods
can be found in [Katzouris et al., 2018].

These techniques have been applied to a variety of CER applications, such as e.g.,
fraud management [Artikis et al., 2017], traffic management [Michelioudakis
et al., 2016a], community detection [Athanasopoulos et al., 2018], and natural
language processing [Wu et al., 2018]. Nevertheless, they all assume a fully la-
belled training input to achieve generalisation, and in the presence of unlabelled
training examples they impose closed-world assumption, that is, they assume
everything not known is false, i.e., negative examples. This assumption can se-
riously compromise the learning task or even worse render it impossible if very
few labels are available, which is a common scenario in real-life applications.

2.6.2 Semi-Supervised Learning

Semi-supervised learning (SSL) methods [van Engelen and Hoos, 2020; Zhu
et al., 2009] exploit information provided by the unlabelled data, instead of
relying only on the labelled data, to guide the learning process and enhance
predictive accuracy. SSL algorithms are based on the cluster assumption, stating
that similar examples tend to belong to the same group, and they are distin-
guished into inductive and transductive. The former learn a classification model,
whereas the latter are solely concerned with obtaining label predictions for the
given unlabelled data.

Self-training techniques [Triguero et al., 2015; Yarowsky, 1995] learn an induc-
tive base classifier from the labelled data and then select confident predictions
on the unlabelled data, as pseudo-labels, in order to iteratively re-train the base
classifier. If probabilistic predictions are employed to select the pseudo-labels at
each iteration, then self-training is similar to the EM algorithm [Dempster et al.,
1977; Ghahramani and Jordan, 1993]. Unfortunately, most of these methods
extend propositional learners to self-training and cannot be directly applied to
logic-based formalisms. Although there are approaches based on decision trees
[Leistner et al., 2009; Tanha et al., 2017], which may be used to extend their
supervised counterparts for relational data [Blockeel and Raedt, 1998], they can-
not learn Event Calculus theories. More importantly, self-training is an iterative

Background 41

procedure, that may have convergence issues [Culp and Michailidis, 2008], and
thus it is inappropriate for online learning.

Co-training or multi-view learning [Blum and Mitchell, 1998; Xu et al., 2013] is
an extension of self-training to multiple classifiers, which are iteratively trained
on the labelled data, adding their most confident predictions to the labelled
dataset of the other classifiers. These methods assume that the training data can
be separated into distinct views, namely disjoint feature sets that provide com-
plementary, ideally conditionally independent information about each instance,
while each view is sufficient to accurately predict each class. Although the con-
ditional independence assumption can be relaxed [Abney, 2002; Balcan et al.,
2004] and heuristics can be devised to automatically split the data into views
[Du et al., 2011], there is no guarantee about their efficacy.

Similar approaches, inspired by multi-view learning, employ different classifiers
in order to exploit predictive divergence [Goldman and Zhou, 2000; Wang and
Zhou, 2007; Zhou and Goldman, 2004]. For instance, Zhou and Li [2005]
proposed tri-training, three different classifiers are alternately trained. When
two of them agree on their prediction for a specific example, that example is
passed onto the third classifier along with its pseudo-label. Li and Guo [2011,
2012] applied tri-training to relational data by using three different ILP learning
systems, namely Aleph [Srinivasan, 2003], kFOIL [Landwehr et al., 2006] and
nFOIL [Landwehr et al., 2007]. The classifiers are initialised using the labelled
data and background knowledge, and then they are refined by iterating over
the unlabelled data. Co-forest [Deng and Guo, 2011; Li and Zhou, 2007] is an
attempt to extend tri-training to more than three classifiers, that is, to random
forests. The idea is to train each decision tree independently on the labelled data
and then, in each subsequent iteration, each tree receives pseudo-labelled data
based on the joint prediction of all other decision trees.

To that end, a number of semi-supervised boosting approaches have also been
proposed [Bennett et al., 2002; d’Alché-Buc et al., 2001; Grandvalet et al., 2001]
that employ pseudo-labels to train an ensemble of classifiers. These methods
do not exploit any form of label confidence to decide which unlabelled points
should be used in the next training iteration. Instead they rely on simple sampling
techniques and thus they may suffer from misclassifications. Mallapragada et al.
[2009] proposed a variation that makes use of the pairwise distances between
labelled and unlabelled examples, similar to graph-based methods, in order to
calculate the confidence of the pseudo-labels.

Most of the above wrapper-like approaches rely on intermediate steps and su-
pervised base learners. However, there are other intrinsically semi-supervised

42 Background

learning methods that naturally extend inductive supervised learners to include
the unlabelled data into the objective function. Vapnik [1998] proposed an exten-
sion to support-vector machines that modifies the objective by minimising also
the number of unlabelled data points that violate the margin, penalised based on
their distance to the closest margin boundary. The main disadvantage is that the
optimisation is non-convex and NP-hard to solve. Therefore most efforts have
been focused on efficient approximations [Bie and Cristianini, 2003; Chapelle
et al., 2008; Collobert et al., 2006; Joachims, 2003]. Although SVMs can be
applied to logic programming [Muggleton et al., 2005], they cannot learn Event
Calculus, since they are restricted to Horn logic.

There are several other approaches that directly incorporate the unlabelled data
into their objective function, such as Gaussian processes [Lawrence and Jordan,
2004], density regularisation [Corduneanu and Jaakkola, 2003; Grandvalet and
Bengio, 2004], and neural network perturbation-based methods [Bachman et al.,
2014; Miyato et al., 2019; Park et al., 2018; Rasmus et al., 2015; Tarvainen and
Valpola, 2017]. Although the idea of penalising the sensitivity of the model to
small perturbations of the input data or the model parameters is interesting, it is
not straightforward for relational learning.

Graph-based methods [Subramanya and Talukdar, 2014] are transductive algo-
rithms, which, unlike inductive ones, do not produce a predictor, they only yield
a set of predictions for the set of unlabelled data points. These methods, as
discussed in Section 2.2, define a graph over all data points, both labelled and
unlabelled, encoding their pairwise similarity using weighted edges. Then the
graph is used to infer the labels of the unlabelled vertices. Blum and Chawla
[2001] proposed a hard label assignment based on graph mincut. Since the
mincut approach can easily lead to degenerate cuts, yielding solutions where
almost all unlabelled data fall within the same graph component, normalisation
techniques have also been proposed to overcome the issue [Blum et al., 2004;
Joachims, 2003]. The graph mincut can be relaxed to produce probabilistic
label assignments [Zhu et al., 2003] yielding an efficient closed-form solution.
The latter is also strongly related to random walks [Azran, 2007; Szummer and
Jaakkola, 2001; Wu et al., 2012] and self-training techniques [Haffari and Sarkar,
2007].

The probabilistic approaches have two drawbacks. First, since the true labels
are fixed during the optimisation, it cannot handle label noise well. Second, in
irregular graphs, the influence of vertices with high degree is relatively large.
Zhou et al. [2003] proposed, instead of clamping the true labels, their deviation
from their original values is penalised. Moreover, the penalty term for unlabelled
data is regularised by the vertex degree to overcome the latter issue. Class

Background 43

imbalance is also a common problem in SSL. Zhu et al. [2003] suggested to
adjust the decision threshold such that predicted label proportions correspond to
predefined label proportions. On the other hand, Wang et al. [2008] developed
an optimisation scheme that mitigates the problem by altering the influence
of labelled samples based on the label proportions. The same approach was
considered by Wang et al. [2013a] from a graph max-cut perspective.

Even though SSL has been extensively studied in static offline environments
[Dyer and Polikar, 2012], online SSL that operates on data streams remains
an open challenge [Krempl et al., 2014]. To that end, only a couple of online
graph-based SSL methods have been proposed to date. Delalleau et al. [2005]
proposed an inductive algorithm that first performs label propagation on a given
training set of labelled and unlabelled data. Subsequent unlabelled examples are
labelled using the previously learned inductive function. However, subsequent
unlabelled examples are not incorporated into the learned model, neither are the
labelled ones potentially arriving on-stream. Huang et al. [2015] also follow an
inductive approach to graph-based SSL, by updating the graph adjacency matrix
incrementally. Nonetheless, in that method all incoming data is stored in memory,
leading to a cost that grows linearly with the training data. Valko et al. [2010]
designed a transductive technique that quantises the stream into a small number
of clusters using an online k-center algorithm. In that method, the harmonic
solution is computed upon the cluster centers. Finally, Wagner et al. [2018], as
presented in Section 2.2.2, a graph synopsis of the stream is stored, to perform
label propagation on the compressed graph, yielding a constant memory cost
analogous to graph size.

2.6.3 Distances for Relational Data

Graph construction is one of the most important steps in graph-based methods
and, the labelling solution is sensitive to the distance measure used to intercon-
nect the examples and capture local similarities. Extensive experiments have
been conducted on different graph construction methods [de Sousa et al., 2013;
Jebara et al., 2009]. However, all of them consider propositional measures for
quantifying edge similarities. In order to apply graph-based SSL to logical repre-
sentations, distance functions suitable for first-order logic are required.

A substantial amount of work exists in the literature on distance-based meth-
ods for learning from relational data. These approaches mainly originated from
instance-based learning (IBL) [Aha et al., 1991], which, like SSL, assumes that
similar instances belong to the same classes (e.g. kNN). Bisson [1992a,b]
proposed a similarity measure, based on the structural comparison of logical

44 Background

atoms, to perform conceptual clustering. Also, the RIBL measure [Emde and
Wettschereck, 1996] extended IBL to the relational case by using a modified ver-
sion of the similarity measure proposed by Bisson [1992b], and a kNN classifier.
The basic idea of RIBL is to measure the similarity of two objects based on the
similarity of their attributes, as well as, the similarity of the objects that are re-
lated to them. Although these distance measures have been used with success
in several applications [Bisson, 1992a; Kirsten and Wrobel, 1998, 2000], they
are limited to function-free Horn logic, operating only over constants. Therefore,
they require flattening of representations having non-constant terms, and thus
cannot be easily applied to nested representations, such as the Event Calculus.
Although RIBL has been improved to allow lists and function terms in the input
representation by employing an edit distance [Bohnebeck et al., 1998; Horváth
et al., 2001], still it is not sensitive to the depth of the structure.

As discussed in Section 2.3, Nienhuys-Cheng [1997] proposed a simple distance
metric for comparing sets of logical atoms. However, the measure is not suited
to first-order logic, where it is possible that two sets of atoms that differ only,
but perhaps very strongly, in one atom are otherwise very similar. Ramon and
Bruynooghe [1998] proposed a general framework for defining distance func-
tions over sets of atoms using one-to-one mappings instead of the Haussdorf
metric. Additionally, Mavroeidis and Flach [2003] define distances using the
lattice structure of the first-order terms, whose metric space is isometrically em-
beddable in a vector space based on any Minkowski metric. However, in order to
generate a common vector space for a set of clauses, all clauses should be avail-
able beforehand, which is not possible in online processing. Another similarity
measure for Horn clauses was proposed by Ferilli et al. [2009], in order to tackle
the problem of indeterminacy, which states that some atoms in one clause can be
possibly mapped to several others onto another clause. However that similarity
measure has increased computational complexity.

An alternative to the structural distances, are the semantic approaches [Sebag,
1997; Sebag and Schoenauer, 1993], that aim to compile a knowledge base into
a similarity measure. The idea is to learn a set of rules from the given training
data and then use them to map the structural representation of the examples
into a vector space. The resulting numerical vectors capture the semantics be-
tween the input data and the target concept and can be compared using typical
propositional measures, like the Euclidean distance. However, in an SSL task,
the induction of these rules is not very reliable since there are only few labelled
data available.

Background 45

2.6.4 Feature Selection

Although, a number of measures exists for first-order logic, either structural or
semantic, none of them essentially accounts for irrelevant or noisy features and
thus their credibility may be compromised.

Numerous methods have been proposed in order cope with such problems, stem-
ming either from feature selection [Chandrashekar and Sahin, 2014; Guyon
et al., 2006] or metric learning [Kulis, 2013; Wang and Sun, 2015] techniques.
Filter methods to feature selection are a popular candidate since they are fast to
compute. Existing approaches are based on mutual information [Brown, 2009;
Vergara and Estévez, 2014], consistency and constraint scores [Arauzo-Azofra
et al., 2008; Benabdeslem and Hindawi, 2014; Zhang et al., 2008], and rough set
theory [Modrzejewski, 1993; Pawlak et al., 1995]. However, these methods usu-
ally provide only a ranking of the features according to a quality criteria. Thus,
the user should select a subset of them based on some hyperparameter, such as,
the top k features or use their respective score as a weight in some underlying
distance, which is not always possible.

Metric learning, on the other hand, is an approach that aims to learn a distance
measure on the feature space in order for some given pairs of data points to be
pulled as close as possible, while others be pushed far apart. Popular approaches
are either supervised based on Mahalanobis distance learning [Goldberger et al.,
2004], or unsupervised ones [Roweis and Saul, 2000; Tenenbaum et al., 2000]
that achieve dimensionality reduction through linear reconstruction. The mass-
based dissimilarity [Aryal et al., 2014], is also a form of unsupervised metric
learning [see Ting et al., 2019, Section 8]. In contrast to supervised methods, it
derives dissimilarity directly from data by estimating the probability mass of the
region covering the given data points, without any class information. Only a few
attempts exist in combining metric learning with graph-based semi-supervised
learning. [Wang and Zhang, 2008] introduced the linear neighbourhood propa-
gation (LNP) algorithm, a form of unsupervised metric learning, that constructs
a graph such that any data point can be approximated as a linear combination of
its neighbours. Then, Karasuyama and Mamitsuka [2013] proposed to regularise
LNP using a Gaussian kernel and finding the coefficients that minimise the local
reconstruction error between each pair of vertices. Supervised metric learning
methods, based on Mahalanobis distances, have also been applied to graph-based
SSL [Okada and Nishida, 2010; Pourdamghani et al., 2012]. However none of
them combine supervised metric learning to mass-based dissimilarity, in order to
exploit both labelled and unlabelled data.

46 Background

2.7 Summary

In this chapter we presented the basics of the Event Calculus formalism and
the OLED system for learning EC theories from annotated data streams. Then,
we discussed an efficient method to graph-based SSL that infers the labels of the
unlabelled data by computing their distance to their labelled counterparts, as well
as, an online variant that retains a synopsis graph of the incoming data in order
to guarantee high quality labelling. Since the distance measure is essential for
such methods, we argued for the necessity of relational distances and presented a
simple distance to compare sets of logical atoms, analysing also its shortcomings.
Finally, we presented a metric learning technique optimised for kNN classification
that can be adapted for feature weighting and a mass-based dissimilarity that
estimates the distance between examples using the data distribution.

In addition, we discussed related work on online learning of CE rules, briefly
pointed out their benefits and drawbacks, as well as, the fact that all existing ap-
proaches assume a fully supervised training sequence in order to operate. Then
we highlighted propositional techniques for semi-supervised learning, such as,
self-training and multi-view training, boosting and SVM extensions, and dis-
cussed their limitations regarding the learning of CE rules and online processing.
We also reviewed related work on graph-based methods and variants that can
operate on data streams. To that end, we pointed out the importance of graph
construction and presented distance measures appropriate for logical represen-
tations, as well as, feature selection and metric learning techniques that are
essential for producing quality measurements, robust to noisy and irrelevant
features.

3 | SPLICE: Semi-Supervised Learning for

Complex Event Recognition

“Analogies, it is true, decide nothing, but they can make one feel more at home.”
— Sigmund Freud

In this chapter we address the problem of effectively applying online structure
learning in the presence of incomplete supervision. Towards that goal, we take
advantage of the structural dependencies underlying a logic-based representation
and exploit regularities in the relational data, in order to correlate given labelled
instances to unlabelled ones and reason about their actual truth values. Structure
learning methods attempt to discover multi-relational dependencies in the input
data, by combining appropriate evidence predicates, that possibly explain the
given supervision, that is, the labelled ground query atoms of interest. The
underlying assumption is that the sets of ground evidence atoms that explain
particular labelled query atoms are also contiguous to sets of ground evidence
atoms that relate to unlabelled instances.

One promising approach to model such similarities for partially supervised data
is to use graph-based techniques. As mentioned in Section 2.2, such methods
attempt to formulate the task of semi-supervised learning as a cost minimisation
problem and then find an optimal assignment of values for the unlabelled in-
stances given a similarity measure. To that end, we adapt the approach of Zhu
et al. [2003] to operate on logical interpretations [Blockeel et al., 1999] that
arrive over time. The resulting system, SPLICE [Michelioudakis et al., 2019], is
designed to infer the missing labels of the incoming examples and scales well to
data volumes that batch graph-based methods cannot handle.

Figure 3.1 presents the components and procedure of SPLICE, using, for illustra-
tion purposes, the human activity recognition domain as formalised in the Event
Calculus. In order to address the online processing requirement, we assume

48 SPLICE

that the training sequence arrives in micro-batches. At each step t of the online
procedure, a training micro-batch Dt arrives containing a sequence of ground
evidence atoms, e.g. two persons walking individually, their distance being less
than 34 pixel positions and having the same orientation. Each micro-batch may
be fully labelled, partially labelled, or contain no labels at all. Labelling is given
in terms of the HoldsAt query atoms that essentially represent the CEs of interest
(see Section 2.1). Unlabelled query atoms are prefixed by ‘?’, and are filled in by
imposing a closed-world assumption. For instance, in micro-batch Dt there is no
labelling for time-point 150, while time-point 100 expresses a positive label for
the move CE activity.

Micro-Batch Dt

HappensAt(walking(ID1), 100)
HappensAt(walking(ID2), 100)
OrientationMove(ID1, ID2, 100)
Close(ID1, ID2, 34, 100)
HoldsAt(move(ID1, ID2), 100)
. . .
HappensAt(walking(ID1), 150)
HappensAt(walking(ID2), 150)
OrientationMove(ID1, ID2, 150)
Close(ID1, ID2, 34, 150)
? HoldsAt(move(ID1, ID2), 150)
. . .

Micro-Batch Dt+1

HappensAt(inactive(ID1), 200)
HappensAt(walking(ID2), 200)
¬OrientationMove(ID1, ID2, 200)
¬Close(ID1, ID2, 34, 200)
¬HoldsAt(move(ID1, ID2), 200)
. . .
HappensAt(inactive(ID1), 220)
HappensAt(walking(ID2), 220)
¬OrientationMove(ID1, ID2, 220)
¬Close(ID1, ID2, 34, 220)
? HoldsAt(move(ID1, ID2), 220)
. . .

. . .

. . .
Data Stream/Training Examples

Data
Partitioning

Label Caching

and Filtering

Graph
Construction

Supervision
Completion

Structure
Learning

FIGURE 3.1: The Semi-Supervised Online Structure Learning (SPLICE) procedure.

In summary, each micro-batch Dt is passed onto the data partitioning component
that groups the training sequence into examples. Each unique labelled example
present in the micro-batch is stored in a cache, in order to be reused in sub-
sequent micro-batches that may have missing labels. Labelled and unlabelled
examples are converted into graph vertices, linked by edges that represent their
structural similarity (see Section 2.3). The resulting graph is then used to label
all unlabelled ground query atoms. Given the fully labelled training sequence, an
online structure learning step refines or enhances the current hypothesis of CE
rules — and the whole procedure is repeated for the next training micro-batch
Dt+1. For the online structure learning component, OLED may be used (see Sec-
tion 2.1). The components of SPLICE are detailed in the following sections. To

SPLICE 49

aid the presentation, we use examples from activity recognition throughout the
thesis.

Micro-Batch Dt

HappensAt(walking(ID1), 5)
HappensAt(walking(ID2), 5)
OrientationMove(ID1, ID2, 5)
Close(ID1, ID2, 34, 5)
HoldsAt(move(ID1, ID2), 5)
. . .
HappensAt(exit(ID1), 20)
HappensAt(walking(ID2), 20)
¬OrientationMove(ID1, ID2, 20)
¬Close(ID1, ID2, 34, 20)
¬HoldsAt(move(ID1, ID2), 20)
. . .
HappensAt(walking(ID1), 50)
HappensAt(walking(ID2), 50)
OrientationMove(ID1, ID2, 50)
Close(ID1, ID2, 34, 50)
? HoldsAt(move(ID1, ID2), 50)
. . .

Training Sequence

HappensAt(walking(ID1), 5)
HappensAt(walking(ID2), 5)
OrientationMove(ID1, ID2, 5)
Close(ID1, ID2, 34, 5)

Example: HoldsAt(move(ID1, ID2), 5)

HappensAt(exit(ID1), 20)
HappensAt(walking(ID2), 20)

Example: ¬HoldsAt(move(ID1, ID2), 20)

HappensAt(walking(ID1), 50)
HappensAt(walking(ID2), 50)
OrientationMove(ID1, ID2, 50)
Close(ID1, ID2, 34, 50)

Example: ? HoldsAt(move(ID1, ID2), 50)

FIGURE 3.2: Data partitioning into examples. Each example contains a ground query
atom, either labelled or unlabelled, as well as a set of true ground evidence atoms that
relate to the query atom through their constants.

3.1 Data Partitioning

In a typical semi-supervised learning task, the training sequence consists of both
labelled instances {xi, yi}li=1 and unlabelled ones {xj}uj=l+1 where each label yi
corresponds to a D-dimensional feature vector xi = (x1, . . . , xD) ∈ RD of input
values. Given a logic-based representation of instances, our approach begins by
partitioning the given input data (micro-batch D) into sets of ground evidence
atoms, each one connected to a (labelled) ground query atom. The resulting
sets are treated as training examples. Let E = {e1, . . . , eM} be the set of all true
evidence ground atoms and Q = {q1, . . . , qN} the set of all ground query atoms
of interest in micro-batch D. Each example should contain exactly one ground
query atom qi and a proper subset Ei ⊂ E : i = {1, . . . , N} of evidence atoms
corresponding to qi. Given the sets E and Q, we construct an example for each
ground query atom in Q, regardless of whether it is labelled or not. To do so, we

50 SPLICE

partition the evidence atoms in E into non-disjoint subsets, by grouping them over
the constants they share directly to the ground query atom qi of each example.
A constant is shared if and only if it appears in both atoms and its position in
the arguments of both atoms has the same type. Note that the position of a
constant in some evidence atom e may differ from that in qi. We refrained from
including longer range dependencies, such as considering evidence atoms that
can be reached through several shared constants, to favour run-time performance.
However, such an extension is straightforward.

Figure 3.2 illustrates the presented procedure. As usual, HoldsAt express query
atoms, while all other predicates express evidence atoms. Unlabelled query
atoms are denoted by the prefix ‘?’. Data partitioning takes into account only
true evidence atoms and concerns only a specific query predicate. Note that
each resulting example has a set Ei ⊂ E of evidence atoms that comprise only
constants relevant to the query atom. For instance, the ground evidence atom
Close(ID1, ID2, 34, 5) appearing only in the top example, shares constants ID1, ID2
with query atoms of other examples too, but constant 5 is only relevant to the
top example. Constant 34 does not appear in any query atom and thus can be
ignored. Similarly, ground evidence atoms having constants that appear in many
query atoms will appear in all corresponding examples. This is an expected and
desirable behaviour, because such predicates indeed capture knowledge that may
be important to many query atoms. For instance, consider a ground predicate
Person(ID1) stating that ID1 is a person. If such a predicate was included in
the evidence of Figure 3.2, it would appear in every example. Moreover, during
partitioning, SPLICE can ignore specific predicates according to a set of given
mode declarations [Muggleton, 1995], using the recall number, i.e., if the recall
number is zero the predicate is ignored.

Algorithm 1 PARTITION(D,M)

Input: D: a training micro-batch,M: a set of mode declarations
Output: V : a set of vertices

1: Partition D into Q and E .
2: V = ∅

cq1, . . . , cqn are constants
3: for all ground query atoms q(cq1, . . . , cqn) ∈ Q do
4: Eq = ∅
5: for all true ground evidence atoms e(ce1, . . . , cem) ∈ E : recall > 0 do
6: Ce,q = {c | c ∈ e ∧ type(c, e) ∈ Types(e) ∩ Types(q)}
7: if ∀ ci ∈ Ce,q ∃ cj ∈ q : ci = cj ∧ type(ci, e) = type(cj , q) then
8: Eq = Eq ∪ e(ce1, . . . , cem)

9: V = V ∪ {(q(cq1, . . . , cqn), Eq)}
10: return V

SPLICE 51

We henceforth refer to examples as vertices, since each example is represented
by a vertex in the graph which is subsequently used to infer the missing labels.
Algorithm 1 presents the pseudo-code for partitioning the input data into exam-
ples representing the graph vertices. The algorithm requires as input a training
micro-batch D and a set of mode declarationsM, and produces a set of vertices
V . At line 1 the micro-batch is partitioned into a set of ground query atoms Q
and a set of ground evidence atoms E . Then at line 3 the algorithm iterates
over all ground query atoms and for each one it finds all true ground evidence
atoms sharing constants of the same type. The set Ce,q includes a constant c of
an evidence atom e if and only if the position of c in e has type τ , and τ is also
present in the query atom q. Then, e is added to the vertex of q if all constants of
Ce,q appear in q, and their positions on both e and q have the same type. Function
type(c, a), appearing in line 6, gives the type of the position of constant c in atom
a, while Types(a) gives all the types of a. Finally, for each pair of a ground query
atom and its corresponding set of relevant ground evidence atoms, the algorithm
creates a vertex and appends it to the vertex set. The algorithm yields a total
runtime complexity of O(|Q||E|).

3.2 Label Caching

In order to handle real-life applications where labelled examples are infrequent
SPLICE uses a caching mechanism, storing previously seen labelled examples for
future usage. At each step of the online supervision completion procedure, SPLICE

stores all unique labelled examples that are not present in the cache and then
uses the cached examples to complete the missing labels. For each labelled vertex
it creates a clause, using the label as the head, the true evidence atoms as the
body, and replacing all constants with variables according to a set of given mode
declarations [Muggleton, 1995]. For instance, the second vertex of Figure 3.2
can be converted to the following clause:

¬HoldsAt(move(id1 , id2), t) ⇐
HappensAt(exit(id1), t) ∧ HappensAt(walking(id2), t)

(3.1)

For each such clause, SPLICE checks the cache for stored vertices that represent
identical clauses and stores only the unique ones. These unique, cached ver-
tices are then used as labelled examples in the graph construction process for
supervision completion in the current and subsequent micro-batches.

52 SPLICE

In any learning task, noise, such as contradicting examples, is a potential risk
that may compromise the accuracy of the learning procedure. In order to make
SPLICE tolerant to noise, we employ the Hoeffding bound [Hoeffding, 1963a],
a probabilistic estimator of the error of a model (true expected error), given its
empirical error (observed error on a training subset) [Dhurandhar and Dobra,
2012]. Given a random variable X ∈ [0, 1] and an observed mean X̄ of its
values after N independent observations, the Hoeffding bound states that with
probability 1−δ the true mean µX of the variable lies in an interval (X̄−ε, X̄+ε),
where ε =

√
ln(2/δ)/2N . In other words, the true average can be approximated

by the observed one with probability 1− δ given an error margin ε.

In order to remove noisy examples, we detect contradictions in the cached la-
belled vertices, using the subset of training data that has been observed so far in
the online process. To do so, we use an idea proposed by Domingos and Hulten
[2000]. Let c be the clause of a cached vertex v and nc the number of times that
clause has appeared in the data so far. Recall that the clause of a cached vertex is
lifted, i.e. all constants are replaced by variables. Thus lifted clauses may appear
many times in the data. Similarly, let ¬c be the opposite clause of c, that is, a
clause having exactly the same body but a negated head, and n¬c its counts. For
instance the opposite clause of (3.1) is:

HoldsAt(move(id1 , id2), t) ⇐
HappensAt(exit(id1), t) ∧ HappensAt(walking(id2), t)

The goal is to eventually select only one of the two contradicting clauses. We
define a function p(c) = nc

nc+n¬c
with range in [0, 1] that represents the probability

of clause c to appear in the data instead of its opposite clause ¬c. Then according
to the Hoeffding bound, for the true mean of the probability difference ∆p =

p(c)− p(¬c) it holds that ∆p̄− ε < ∆p, with probability 1− δ. Hence, if ∆p̄ > ε,
we accept the hypothesis that c is indeed the best clause with probability 1−δ and
thus v is kept at this point. Similarly, ¬c is the best one if −∆p̄ > ε. Therefore, in
order to select between contradicting labelled examples, it suffices to accumulate
observations until their probability difference exceeds ε. Until that point both
example vertices are used in the optimisation.

Although we use the Hoeffding inequality to make filtering decisions for con-
tradicting examples, given the data that we have seen so far, the examples are
not independent as the Hoeffding bound requires. Consequently, we allow this
filtering decision to change in the future, given the new examples that stream-in,
by keeping frequency counts of the lifted examples. Furthermore, we assume

SPLICE 53

Algorithm 2 CACHEUPDATEANDFILTER(VL, C)
Input: VL: a set of labelled vertices,
C: a cache containing mappings of vertices to their counts
Output: V ′

L: a set of filtered labelled vertices, C: the updated cache
1: for vi ∈ VL do
2: if ∃ vj ∈ C : canUnify(clause(vi), clause(vj)) then
3: C[vj] = C[vj] + 1
4: else
5: C[vi] = 1

6: Initialise accumulated unique filtered labelled nodes V ′
L = ∅

7: for (vi, n) ∈ C do
8: Generate clause c = clause(vi) and its opposite ¬c
9: if ∃ vj ∈ C : clause(vj) = ¬c then

10: Compute total number of appearances N = C[vi] + C[vj]
11: Compute frequencies pc =

C[vi]
N , p¬c =

C[vj]
N

12: Compute ε =

√
ln(2/δ)
2N

13: if pc − p¬c > ε then
14: V ′

L = V ′
L ∪ vi

15: else
16: V ′

L = V ′
L ∪ vi

17: return V ′
L, C

that the examples stem from a stationary stochastic process and thus the differ-
ence between contradicting example frequencies eventually converges when a
sufficient amount of observations is accumulated. This is not the case in other
applications [Abdulsalam et al., 2011; Domingos and Hulten, 2000] in which the
decision is permanent.

Algorithm 2 presents the pseudo-code for cache update and filtering. The algo-
rithm requires as input the labelled vertices of the current micro-batch and the
cached mappings of vertices to their counts, and produces as output the set of
filtered labelled vertices and the updated cache. If the clause view of a vertex
exists in the cache, then the counter of that vertex is incremented, otherwise the
vertex is appended to the cache and its counter is set to 1 (see lines 1–5). For
each vertex in the cache we produce its clause and check if the cache contains
a vertex representing the opposite clause. In case the opposite clause exists, the
Hoeffding bound is calculated, in order to decide whether one of them can be
filtered out (see lines 6–16). Given an appropriate hash function for the cache
data structure (good distribution of hash keys), all cache query operations take
effectively constant time. Hence, the algorithm yields a total time complexity of
O(|QL|), where |QL| is the number of labelled query atoms in a micro-batch.

54 SPLICE

3.3 Graph Construction

Once the example vertices have been constructed, SPLICE assigns truth values to
the unlabelled vertices, by exploiting the information provided by the labelled
ones, as well as, the similarity to other unlabelled vertices. A weighted edge
between a particular pair of vertices vi, vj : i, j ∈ {1, . . . , N} represents the
structural similarity of the underlying ground evidence atom sets in the two
vertices. Recall that the number of vertices is equal to the number of ground
query atoms in Q, that is N . Let wij be the edge weight, i.e., the structural
similarity of vi and vj. If wij is large enough, then the truth values of the ground
query atoms qi, qj are expected to be identical. Therefore, the similarity measure
essentially controls the quality of the supervision completion solution.

Our approach regarding the computation of the evidence atom similarities is
based on a measure of structural dissimilarity ds : E × E 7→ R, over a set of first-
order expressions E . The distance ds does not make any syntactical assumptions
about the expressions, such as function-free predicates, and thus it is applicable
to any domain of interest. As described in Section 2.3, we apply the measure
over sets of ground atoms using the Kuhn-Munkres algorithm, which provides
an optimal one-to-one mapping given a cost matrix. In our case the cost matrix
essentially holds the distances between each pair of ground atoms, computed
by Eq. (2.9), present in the sets being compared. In particular, for each pair of
vertices vi = (Ei, qi), vj = (Ej, qj) our approach begins by computing the distance
between each pair of expressions d(eim, ejk) : eim ∈ Ei, ejk ∈ Ej resulting in a
matrix C that represents the costs of the assignment problem:

C =

d(ei,1, ej,1) d(ei,1, ej,2) · · · d(ei,1, ej,M)

d(ei,2, ej,1) d(ei,2, ej,2) · · · d(ei,2, ej,M)
...

...
d(ei,M , ej,1) d(ei,M , ej,2) · · · d(ei,M , ej,M)

This matrix is square M ×M , assuming that the sets Ei and Ej are of equal size.
In the general case, of a M ×K matrix, where M > K, C is padded using zero
values to complete the smaller dimension and be made square. Intuitively, the
zero values in the smaller set capture the notion of unmatched atoms. Matrix
C can then be used as the input cost matrix for the Kuhn-Munkres algorithm,
in order to find the optimal mapping of evidence atoms. The optimal mapping
is denoted here by the function g : V × V 7→ {(m, k) : m, k ∈ {1, . . . , K}}
and is the one that minimises the total cost, i.e., the sum of the distances of the
mappings. Finally, SPLICE computes the total distance between the vertices vi, vj

SPLICE 55

as the sum of the distances yielded by the optimal mapping normalised by the
greater dimension, that is M , of the matrix:

ds(vi, vj) =
1

M

[
(M −K) +

∑
(m,k)∈ g(vi,vj)

Cm,k

]
(3.2)

The unmatched evidence atoms constitute an important component of the dis-
tance, due to the term M −K, which penalises every unmatched ground atom
by the greatest possible distance, that is 1. Thus, M − K can be seen as a reg-
ularisation term. The need to penalise unmatched atoms stems from the fact
that they may represent important features that discriminate a positive from a
negative example. The distance is turned into a similarity s(vi, vj) = 1− ds(vi, vj)

and assigned as the weight wij of the edge connecting the vertices vi, vj. The
measure denoted by the function s is symmetric and is used to calculate the
similarity of all distinct vertex pairs. The process generates a N ×N symmetrical
adjacency matrix W comprising the weights of all graph edges. Hence, matrix W

is computed using Eq. (3.2) through function s. To avoid self-loops, i.e., edges
that connect a vertex to itself, we set the diagonal of the W matrix to zero:

W =

0 s(v1, v2) · · · s(v1, vN)

s(v2, v1) 0 · · · s(v2, vN)
...

...
s(vN , v1) s(vN , v2) · · · 0

In order to turn the similarity matrix W into a graph, we use a connection
heuristic, which introduces edges only between vertices that are very similar, i.e.,
they have a high weight. In the simplest case, we connect the vertices vi, vj if
s(vi, vj) ≥ ϵ, given some threshold value ϵ (ϵNN). Another alternative is to use k

nearest neighbour (kNN) to choose the edges that will be kept. According to this
approach, for each vertex vi we identify the closest (most similar) k vertices. Note
that if vi is among vj ’s k nearest neighbours, the reverse is not necessarily true.
Therefore, as soon as kNN is applied, matrix W is no longer symmetric. In order
to avoid tie-breaking, we modified kNN to select the top k distinct weights in a
vertex neighbourhood, and then connect all neighbours having such a weight.

3.4 Supervision Completion

Given the weight matrix W, we apply one of the two connection heuristics –
thresholding and kNN – mentioned above to obtain a sparse matrix W′, having

56 SPLICE

zeros for unconnected vertices and some positive similarity value wij ∈ (0, 1] for
the rest. Matrix W′ is then used to solve a cost minimisation problem and assign
truth values to the unlabelled ground query atoms.

Let l + u = N be the number of labelled and unlabelled vertices. The closed-
form solution of the optimisation problem for the harmonic function (see Section
2.2) in matrix notation is as follows. Let Dii be the weighted degree of vertex
i, i.e., the sum of the edge weights connected to i. Let D be a N × N diagonal
matrix, containing Dii on the diagonal, computed over the matrix W′. Then the
unnormalised graph Laplacian matrix L is defined as follows:

L = D−W′

In this case, the Laplacian matrix essentially encodes the extent to which the
harmonic function f (see Eq. (2.8)) differs at a vertex from the values of nearby
vertices. Assuming that vertices are ordered so that the labelled ones are listed
first, the Laplacian matrix can be partitioned into four sub-matrices as follows:

L =

[
Lll Llu

Lul Luu

]

The partitioning is useful for visualising the parts of L. Sub-matrices Lll,Llu,Lul

and Luu comprise, respectively, the harmonic function differences between la-
belled vertices, labelled to unlabelled, unlabelled to labelled and unlabelled to
unlabelled. Note that Llu and Lul are not symmetric if the kNN connection heuris-
tic has been applied on W.

Let f =
(
f(x1), . . . , f(xl+u)

)T be the vector of f values of all vertices and the
partitioning of f into (fl, fu) holds the values of the labelled and unlabelled
vertices respectively. Then by solving the constrained optimisation problem,
expressed in Eq. (2.7), using Lagrange multipliers and matrix algebra, one can
formulate the harmonic solution as follows:

fl = yl

fu = −L−1
uuLulyl

(3.3)

Note that Eq. (3.3) requires the computation of the inverse of matrix Luu that
may be singular, due to many zero values (sparsity). In order to avoid such situa-
tions, we compute the pseudo-inverse. Since the optimal solution is required to

SPLICE 57

comprise the labels assigned to unlabelled vertices in [−1, 1], the resulting solu-
tion fu is thresholded at zero to produce binary labels. Alternatively, an adaptive
thresholding approach may be used to handle the possible class imbalance by
exploiting the class prior probabilities, such as, the log-odds threshold approach
proposed by Zhu et al. [2003], called class mass normalisation. However, in an
online learning task, the class prior probabilities are usually unknown, and dif-
ficult to estimate from data, since there are few available labels, which in turn
may yield much worse performance than the harmonic threshold.

Algorithm 3 SUPERVISIONCOMPLETION(V , h, s)
Input: V : a set of labelled and unlabelled vertices,
h: a connection heuristic, s: structural similarity
Output: fu: labels for the unlabelled query atoms

1: Initialise matrix W to be the zero matrix 0
2: for vi ∈ VU do
3: for vj ∈ V do
4: wij = s(vi, vj)

5: Apply the connection heuristic: W′ = h(W)
6: Compute Laplacian matrix: L = D−W′

7: Compute the harmonic solution: fu = −L−1
uuLulyl

Perform thresholding to acquire binary labels
8: for fi ∈ fu do
9: if fi < small value then fi = −1 which represents false

10: else fi = 1 which represents true
11: return fu

Algorithm 3 presents the pseudo-code for connecting the graph vertices and
performing supervision completion. The algorithm requires as input a connection
heuristic, a structural similarity and a set of vertices, and produces as output a
set of labels for the unlabelled vertices. First, we compute the similarity between
pairs of vertices (see lines 1–4). Note that Eq. (3.3) only requires Luu and Lul

and thus we only compute unlabelled-to-unlabelled and unlabelled-to-labelled
connections. Then, we apply the connection heuristic to the matrix W holding
the similarity values, compute the Laplacian matrix L and solve the optimisation
problem (see lines 5–7). Finally, for the resulting vector fu holding the values of
the unlabelled vertices, we perform thresholding on each value, yielding binary
labels (see lines 8-10). Since the unlabelled examples are typically many more
than the labelled ones (in a micro-batch), the inversion of the Laplacian matrix,
yielding time |QU |3, is the main overhead of the algorithm, where |QU | denotes
the number of unlabelled ground query atoms in a micro-batch. Algorithm 4
presents the complete SPLICE procedure.

58 SPLICE

Algorithm 4 SPLICE(h, s, δ,M)
Input: h: connection heuristic, s: structural similarity,

δ: Hoeffding bound confidence,M: Mode declarations
1: Initialise cache containing list of vertices and their counts C = ∅
2: for t = 1 to I micro-batches do
3: Receive a micro-batch Dt = (Qt, Et)

Qt is a set of ground query atoms and Et a set of ground evidence atoms.
4: Partition data into vertices V = PARTITION(Dt,M)
5: Partition V into labelled VL and unlabelled VU vertices
6: V ′

L, C = CACHEUPDATEANDFILTER(VL, C)
7: Union of the unique labelled nodes with unlabelled ones: V ′=V ′

L ∪ VU

8: fu = SUPERVISIONCOMPLETION(V ′, h, z)
9: Perform a structure learning step using (fl, fu)

4 | SPLICE : Semi-Supervised Learning

Combining Structure and Mass-based
Predicate Similarity

“Information is the resolution of uncertainty.”
— Claude Shannon

In the previous chapter, we presented SPLICE, a technique that aims to effectively
learn the structure of complex event rules in the presence of incomplete supervi-
sion. However, there are a couple of downsides, related to its graph construction
process (see Figure 3.1), that may compromise the online labelling of the un-
labelled data. First, the underlying structural distance may be deluded in the
presence of irrelevant or noisy features. Second, the distance measurements be-
tween labelled and unlabelled data, inevitably, are as informative as the provided
labels. For instance, if the given labels are not representative of the underlying
class distribution, so are the measurements. Third, the online labelling inferred
from the local graphs built per micro-batch, provides no guarantee with respect
to the global solution obtained if all data where to be accessed at once.

In this chapter our goal is to improve the quality of the graph construction, as
used by SPLICE, leading to a more robust and accurate labelling of the incoming
unlabelled data. Figure 4.1, extending Figure 3.1, presents an overview of these
improvements. We propose a hybrid distance measure composed of two elemen-
tary distances, that combined aim to eliminate the drawbacks of the structural
distance alone. The former part of the distance measure is an enhanced version of
Eq. (3.2) that accounts for irrelevant or noisy features by selecting only a subset
of them, that is, the ones optimising kNN classification on the labelled data. Since
such a feature selection is achieved using only the labelled data, the selected fea-
tures may not always be representative of the underlying classes. Therefore, we

60 SPLICE

Micro-Batch Dt

HappensAt(walking(ID1), 100)
HappensAt(walking(ID2), 100)
OrientationMove(ID1, ID2, 100)
Close(ID1, ID2, 34, 100)
HoldsAt(move(ID1, ID2), 100)
. . .
HappensAt(walking(ID1), 150)
HappensAt(walking(ID2), 150)
OrientationMove(ID1, ID2, 150)
Close(ID1, ID2, 34, 150)
? HoldsAt(move(ID1, ID2), 150)
. . .

Micro-Batch Dt+1

HappensAt(inactive(ID1), 200)
HappensAt(walking(ID2), 200)
¬OrientationMove(ID1, ID2, 200)
¬Close(ID1, ID2, 34, 200)
¬HoldsAt(move(ID1, ID2), 200)
. . .
HappensAt(inactive(ID1), 220)
HappensAt(walking(ID2), 220)
¬OrientationMove(ID1, ID2, 220)
¬Close(ID1, ID2, 34, 220)
? HoldsAt(move(ID1, ID2), 220)
. . .

. . .

. . .
Data Stream/Training Examples

Data
Partitioning

Label Caching
and Filtering

Graph
Construction

Supervision
Completion

Structure
Learning

Optimised
Structural
Distance

Mass-based
Dissimilarity

Graph
Connection

Temporal
kNN

Synopsis
Update

FIGURE 4.1: The SPLICE procedure.

combine the optimised structural distance with a data-driven mass-based dis-
similarity, adapted for logical structures. The latter employs mass estimation
theory to compute the relative distance between examples, which, intuitively, is
measured as the probability density of their least general generalisation [Plotkin,
1971].

Moreover, in order to render SPLICE aware of the temporal nature of the data
in online processing and CER, we further alter its strategy for interconnecting
graph vertices. We connect each unlabelled vertex to its k-nearest labelled neigh-
bours, as well as, the temporally preceding unlabelled vertex. Therefore, we
promote interactions between temporally adjacent unlabelled vertices during la-
bel propagation. Finally, similar to Wagner et al. [2018], we store a synopsis of
the full history of the stream, by means of a short-circuit operator, that preserves
the effective distances of labelled and unlabelled example vertices to subsequent
optimisations.

Henceforth, we refer to our enhanced approach as SPLICE . The proposed im-
provements introduced by our method are detailed in the following subsections.

SPLICE 61

4.1 Large-Margin Feature Selection for Logical Predicates

In order to render the structural distance of Eq. (3.2) aware of irrelevant or
noisy features, we introduce a mechanism for feature selection based on the
ideas of LMNN metric learning. We adapt the idea of feature weighting, as
presented in Section 2.4, by learning a binary vector, instead of real-valued
one, that represents the set of selected logical atoms to be used for computing
distances. Towards that goal, we use an approach similar to propositionalization
[Alphonse and Matwin, 2002; Zucker and Ganascia, 1996]. More formally, let A
be a set of first-order atoms that can be constructed from a Hebrand base B and
a set of mode declarationsM, by replacing constants with variables. Assuming
a strict ordering of atoms in A, let b be a vector of binary variables, one of each
first-order atom ai ∈ A. Thus, each indicator variable bi = 1 if the ith atom is
selected, and bi = 0 otherwise. Since each labelled training example is essentially
a clause c, it can also be seen as a binary vector xc = [x1, . . . , x|A|]

T, where each
variable xi refers to the presence of the corresponding atom ai from A in the
clause represented by xc. For instance, assuming that B contains the ground
atoms appearing in Figure 3.2, we can create an ordered set of atoms as follows:

A =
{
HappensAt(walking(x), t), HappensAt(walking(y), t), HappensAt(exit(x), t),

OrientationMove(x , y , t), Close(x , y , 34, t)
}

Then, the top example from Figure 3.2 is represented as xtop = [1, 1, 0, 1, 1], then
middle one as xmid = [0, 1, 1, 0, 0] and the bottom one as xbot = [1, 1, 0, 1, 1]. Thus,
the distance between two such examples is essentially a Hamming distance,
which is equivalent to the general Minkowski distance for p = 1. Since the
Minkowski distance is a generalisation of the Euclidean distance, we reformulate
the loss function of Eq. (2.16) as follows:

ε(b) = (1− µ)
∑
j∈N k

i

b|xi − xj|+ µ
∑

i,j∈N k
i

∑
l

(1− yil)
[
1 + b|xi − xj| − b|xi − xl|

]
+

where x is the clausal form of an example represented as a binary vector accord-
ing to a predetermined strict ordering over A, and b is the vector of indicator
variables, denoting which features in x are selected. Moreover, we drop the
first term of the loss function (corresponding to εpull), since it has been shown
by Song et al. [2017] that the simpler problem often results in better solutions.

62 SPLICE

Moreover, the simpler loss function no longer depends on the parameter µ. The
resulting minimisation problem is an integer linear programming problem and
can be solved using variants of the branch-and-bound or branch-and-cut methods,
albeit less efficiently than the real-valued problem1:

minimise
∑

i,j∈N k
i

∑
l

(1− yil)ξijl

subject to (1) b|xi − xl| − b|xi − xj| ≥ 1− ξijl

(2) bxi ≥ 1

(3) ξijl ∈ N≥

(4) b ∈ {0, 1}|A|

(4.1)

The intuition of our proposed feature subset selection, called Large-Margin Fea-
ture Selection (LMFS), is to keep the minimal set of logical atoms (features) that
are necessary to discriminate the given set of labelled examples. Note that the
slack variables that monitor the hinge loss are integers instead of real values
since a hamming distance yields only integer differences. Moreover, we have
added an extra constraint that forces all labelled examples to have at least one
positive atom that is selected. This constraint is necessary to avoid extremely
sparse solutions that remove many atoms yielding empty examples. As soon as
the optimal vector b has been found, we can generalise all example vertices by re-
moving irrelevant features, that is, features for which bi = 0. Then, the structural
distance can be computed as usual, by applying Eq. (3.2) over the generalised
vertices:

dbs (vi, vj) = ds(v
b
i , v

b
j) (4.2)

where vi, vj are vertices and vbi , v
b
j their generalised counterparts, having some

first-order atoms removed. One issue that may arise from selecting features using
only the labelled examples is that some atoms that appear only in unlabelled
examples are not considered during the optimisation. Regarding those atoms,
that appear only in the unlabelled examples, we assume that they are always
selected (b = 1) and use them in distance measurements.

LMNN requires that training examples are accompanied by some form of labelling.
Then the optimisation above would retain the features that are necessary to
discriminate between these labels. However, in a Hamming space distances
change quite abruptly because a single mismatch between two binary vectors

1Note that in a semi-supervised problem the labelled examples are very few and sparse, leading to a very
small number of constraints and thus Eq. 4.1 can be solved fast enough.

SPLICE 63

always yields a penalty of 1 between the vectors. In other words, while in an
Euclidean space two points can be close or far in a specific dimension, according
to their real-valued difference, in a Hamming space they are either the same or
different in that dimension. Thus, clauses formed from training examples may
appear very different inside the boundaries of a specific class, leading to very
sparse solutions. This is because the optimisation would force them to become
similar by removing atoms that cause mismatches. To avoid such situations, we
perform clustering of the examples of each class and use the clusters as distinct
classes to solve the optimisation problem.

Since we are interested in clustering the examples of each class into cohesive
clusters, we cannot use a distance-based clustering, as it will suffer from the
same noisy and irrelevant features that we aim to get rid of in the first place.
To avoid that pitfall, we employ a clustering approach based on θ-subsumption.
Examples in a cluster that are connected through a θ-subsumption relation and
have the same label, define a taxonomic hierarchy containing all examples that
are members of a specific concept. For instance, if two examples of the same
class and length only differ in one atom, they cannot subsume each other and
hence cannot be in the same cluster under θ-subsumption. Consider the top and
middle examples of Figure 3.2. They should form different unit clusters, since
they belong to opposite classes. If the bottom example was also positive, then
it would belong to the same cluster as the top example since it θ-subsumes the
top example. Thus, the resulting set of clusters represents a strict partitioning
of the example space into distinct sub-concepts. Given such a clustering, the
optimisation of Eq. (4.1) should select features that respect that partitioning,
identifying which features are necessary for discriminating each sub-concept.

Algorithm 5 FEATURESELECTION(VL,M)

Input: VL: a set of labelled example vertices,M: a set of mode declarations
Output: b: a vector of binary values corresponding to selected features

1: Partition VL into positive VP and negative VN vertices.
2: Find vmaxi = argmaxvi∈VP

|vi| and vmaxj = argmaxvj∈VN
|vj |.

3: Form unit clusters C = {{vmaxi }, {vmaxj }}.
4: for vi ∈ VL/vmaxi ,vmaxj

do
5: for c ∈ C do
6: if ∃ v′ ∈ c : clause(vi)θ ⊆ clause(v′) then
7: c = c

⋃
vi

8: Solve optimisation of Eq. (4.1) using C as a set of examples.
9: return b

Algorithm 5 presents the pseudo-code for selecting the first-order predicates that
best discriminate the known labelled vertices into sub-concepts. The algorithm
requires as input a set of labelled examples, a set of mode declarations, and

64 SPLICE

produces a vector of selected features. It starts by partitioning the given examples
into positive and negative ones (line 1). Then for each of the two sets it finds
the example having the most evidence atoms (ties are broken randomly) and
creates unit clusters (lines 2–3). For each of the remaining examples it either
appends it to an existing cluster, if another example exists that is θ-subsumed
by the candidate, or it creates a new unit cluster (lines 4–7). Finally, it solves
the optimisation problem of Eq. (4.1) using the clusters as distinct classes and
returns the vector of selected features (lines 8–9).

4.2 Mass Dissimilarity for Logical Predicates

Supervised learning approaches to feature selection require explicit or implicit
computation of the information/importance of each feature using the labels avail-
able in the training examples. However, in a semi-supervised learning task, the
few labels that are often available are not sufficient for acquiring trustworthy
estimation of the feature importance. Thus, common feature selection criteria
are not reliable and their optimality guarantees suffer from the fact that only a
few training examples are available.

In order to address the issue, we combine the optimised structural distance,
as presented in Section 2.6.4, with a data-driven dissimilarity that uses mass
estimation to measure the distance between data points. The intuition of the
measure is that two points are considered to be more similar if they coexist in a
sparse space rather than in a dense one. Unlike the distance estimation presented
in Section 4.1, the proposed approach exploits both labelled and unlabelled data
to quantify the distances between examples.

To that end, we adapt the approach presented in Section 2.5 to handle logical
structures by means of the Herbrand base B and a set of mode declarationsM,
the combination of which generates a set of logical atoms A (see Section 4.1).
Since the space of these logical atoms is a hypercube {0, 1}|A|, we can define a
hierarchical partitioning H of the hypercube by randomly constructing a Half-
Space Tree2 [Ting et al., 2013]. In contrast to the approach of Ting et al. [2019],
which assumes real-valued features, we can construct the trees beforehand be-
cause each internal node of the tree may only have one possible split, since all
logical atoms are binary by definition. Algorithm 6 presents the pseudo-code for
creating a forest of such binary random trees.

2Half-Space Trees are just like Isolation Trees, but instead of random splits they perform median splits.
Thus, in a Hamming Space they are equivalent. However, we chose to use the former term since it implies a
half-space partitioning which is more appropriate for binary features.

SPLICE 65

Algorithm 6 CREATEFOREST(A, T , h)

Input: A: a set of first-order atoms, T : number of trees, h: maximum tree height
Output: F : a set of Half-Space Trees

1: F = ∅
2: for i = 1 to T do
3: F = F

⋃
CREATETREE(A, 0, h)

4: return F
5:

6: function CREATETREE(A, d, h) ▷ d is the current depth of the tree
7: if d > h ∨ |A| < 1 then
8: return Node(size← 0, split← ∅, left← ∅, right← ∅)
9: else

10: Randomly select an atom a ∈ A.
11: return Node(size← 0, split← a, left← CREATETREE(A/a, d+1, h),
12: right← CREATETREE(A/a, d+1, h))

The algorithm requires as input a set of first-order atoms, the required number
of trees, and a maximum height for each tree. We start from an empty set and
iteratively generate random trees (see lines 1–4). Each node in the tree consists
of a split atom, a left and right subtree, as well as, a size variable that stores
the number of examples that have matched the path to this node. Each tree is
built recursively by picking an atom at random from the given set of available
atoms and creating two random subtrees on the remaining atoms (lines 9–11).
The process terminates if no atoms are left in the set A or the maximum height
is reached.

Algorithm 7 UPDATEFOREST(F , V)

Input: F : a set of Half-Space trees, V : a set of example vertices
1: for tree ∈ F ∧ v ∈ V do
2: UPDATESIZE(tree, v)
3:

4: function UPDATESIZE(tree, v)
5: tree.size← tree.size + 1
6: if tree.left ̸= ∅ ∧ tree.split /∈ v then UPDATESIZE(tree.left, v)
7: else if tree.right ̸= ∅ ∧ tree.split ∈ v then UPDATESIZE(tree.right, v/tree.split)

Note that during tree creation, each internal node of each tree has zero size. Tree
creation happens before any data are processed. The size of the nodes is updated
as more data stream in. Algorithm 7 describes this update process. The algorithm
requires as input a forest of binary random trees and a set of examples. For each
example it updates the counts of the internal nodes of each tree (lines 1–2). The
update procedure is a recursive process that increments the size of the current
node and then proceeds to the update of the child node that matches the split
criterion of the current node (lines 5–7). Since each example is a set of atoms

66 SPLICE

the split criterion match is checked by the membership of the split atom. Thus,
the path from the root to the leaf that contains the matched atoms of the given
example increment the counts of its nodes.

⊤

HappensAt(inactive(x), t)
[5]

HappensAt(walking(x), t)

HappensAt(walking(x), t),
HappensAt(inactive(x), t)

[2]
HappensAt(walking(x), t),

OrientationMove(x, y, t)

[1]
HappensAt(walking(x), t),

OrientationMove(x, y, t)
HappensAt(inactive(x), t),

[1]
HappensAt(walking(x), t),

OrientationMove(x, y, t)
¬HappensAt(inactive(y), t)

. . .

[3]
HappensAt(walking(x), t),

¬OrientationMove(x, y, t)

[2]
¬HappensAt(walking(x), t)

. . .

. . .

⊥

FIGURE 4.2: Path selected by a random tree from the subsumption lattice.

The intuition behind this relational version of Half-Space Trees is that we estimate
the mass of specific areas of the subsumption lattice generated from a given
Herbrand base B and constrained by the mode declarationsM. Figure 4.2 depicts
a part of the subsumption lattice constructed from the atoms appearing in the
training sequence of Figure 4.1. The highlighted part of the lattice presents a
possible Half-Space Tree constructed by selecting one split atom per level, while
the numbers represent the node sizes. In this case, the sizes correspond to the
three examples of Figure 3.2. Therefore, each tree essentially represents only a
part of the lattice and estimates the mass of each node from data. Given two
examples, their overlap (set of common atoms) is quantified as the size of the
deepest node in the tree that contains all common atoms along its path from the
root. If the size is small, then these two examples are located in a sparse part
of the space and thus they are considered more similar. Consider for instance
the top and middle examples of Figure 3.2. Their set of common atoms is just
the atom HappensAt(walking(x), t), which, in the tree appearing in Figure 4.2,
is located in the first level of the tree and has size 3. Therefore, these examples
co-exist in a dense part of the tree and they may be considered less similar.

SPLICE 67

The resulting Half-Space Forest can be used to compute the mass-based dissimi-
larity of Eq. (2.19) for a pair of examples as follows:

m̃(vi, vj) =
1

T

T∑
p=1

|R(vi, vj|Hp)|
|D|

where vi, vj are two examples, Hp is a binary Half-Space Tree (out of T), D is the
set of all examples used to update the trees and R, similar to Section 2.5, is the
deepest region covering both examples.

4.3 Robust Graph Construction and Labelling

Given a set of examples, our goal is to connect them by edges representing the
similarity of the underlying evidence atom sets. The resulting graph is used
to derive labels for all unlabelled example vertices in the current data micro-
batch. In order to construct the similarity graph for label propagation we combine
the mass-based dissimilarity, as presented in Section 4.2, with the optimised
structural distance of Eq. (4.2) as follows:

dbh(vi, vj) = α dbs (vi, vj) + (1− α) m̃(vi, vj)

where α controls the relative importance of each of the two distances. Similar
to SPLICE, the hybrid distance is turned into a similarity as 1 − dbh(vi, vj). Fully
connecting the vertices generates a N × N symmetrical adjacency matrix W,
comprising the weights of all graph edges. In order to make the graph sparser,
we aim to select the stronger edges in each neighbourhood. To that end, SPLICE

uses a temporal variant of kNN that connects each unlabelled vertex to its k-
nearest (most similar) labelled neighbours, as well as to its temporally adjacent
ones. The intuition behind this extension of kNN is that temporally adjacent
vertices should affect the labelling of each other, even if they are not very similar.
In terms of label propagation, temporally adjacent neighbours should exchange
information about their respective labelling, albeit weighted by their similarity.

Moreover, in order to obtain guarantees for the online labelling achieved by label
propagation on the local graphs built from the micro-batches, SPLICE stores a
synopsis of the graph, as presented in Section 2.2.2. Given a memory size pa-
rameter τ , the synopsis removes older vertices from the graph (when memory
size is exceeded), in order to make room for newer ones, by meshing their edges

68 SPLICE

to the rest of the graph using star-mesh transforms. The harmonic solution com-
puted on the compressed graph is guaranteed to be equal to the one computed
on the entire stream seen so far. Therefore, the synopsis renders the labelling
invariant to different batch sizes. Algorithm 8 presents the graph construction
pseudo-code.

Algorithm 8 GRAPHCONSTRUCTION(F , V)

Input: F : a set of Half-Space Trees, V : a set of example vertices
1: Partition example vertices into labelled and unlabelled V = (VL, VU)
2: UPDATEFOREST(F , V t

L ∪ V t
U)

3: if V t
L ̸= ∅ then

4: b = FEATURESELECTION(VL,M)

5: Vτ ← VL ∪ VU/V
t
U

6: for vi ∈ Vτ do
7: for vj ∈ V t

U do
8: wvi,vj ← 1− dbh(vi, vj)

9: Vτ ← Vτ ∪ V t
U

10: Apply the connection heuristic: Wh = temporal-kNN(W)
11: while |Vτ | > τ + |VL| do
12: Find oldest vertex vo ← Vτ/VL.
13: for all vertex pairs v ̸= v′ in Vτ do
14: wv,v′ ← wv,v′ +

wvo,vwvo,v′
degree(vo)

15: Remove all vo edges from Wh.
16: return Wh

The algorithm requires as input a pre-built Half-Space Forest, and a set of exam-
ples. The examples are partitioned into labelled and unlabelled at line 1. Then
only the examples received in the current micro-batch t (labelled V t

L and unla-
belled V t

U) are used for updating the forest counts at line 2. Subsequently, if the
micro-batch t contains only unlabelled examples and labels have been added in
VL since the last time LMFS was run, the optimal set of features is re-computed
(lines 3–4). In lines 5–9 the graph connection process takes place. Each stored
example is connected to the unlabelled examples received at micro-batch t. The
set Vτ of stored examples is composed of all the labelled examples VL and the τ

stored unlabelled ones, VU \ V t
U , where τ is the synopsis size. Then, the temporal-

kNN connection heuristic is applied at line 10 to make the graph sparser. As a
final step, while the number of stored unlabelled examples is greater than the
given memory size τ , the algorithm removes the oldest example together with its
edges and applies a star-mesh transform to its neighbours (lines 11–15).

5 | Experimental Study

“It doesn’t matter how beautiful your theory is, if it doesn’t agree with experiment, it’s wrong.”
— Richard P. Feynman

In this chapter, we present experimental results for both SPLICE and SPLICE

on the task of Complex Event Recognition (CER), using OLED [Katzouris et al.,
2016] for learning complex event rules in the Event Calculus. For the evaluation,
we use a publicly available benchmark activity recognition dataset of the CAVIAR
project1, a publicly available maritime surveillance dataset concerning the area
of Brest, France2, and a fleet management dataset, recording the activity of
vehicles around Greece and neighbouring countries3. Part of our evaluation also
compares SPLICE and SPLICE to simple kNN and a baseline that runs Iterative
Cross-Training [Soonthornphisaj and Kijsirikul, 2004] combining ILASP [Law
et al., 2016, 2018], a state-of-the-art ILP system for learning Event Calculus
theories and Naive Bayes (ILASP-NB). All experiments were conducted on a Linux
machine having an Intel i7 4790@3.6GHz CPU (4 cores, 8 threads) and 16GiB
of RAM. All presented experiments can be reproduced, following the provided
instructions4.

5.1 Description of Datasets

The activity recognition dataset comprises 28 surveillance videos, where each
video frame is annotated by human experts on two levels. The first level contains
SDEs (simple, derived events) that concern instantaneous activities of individual
persons, detected on video frames, such as when a person is walking or staying

1http://homepages.inf.ed.ac.uk/rbf/CAVIARDATA1
2https://zenodo.org/record/1167595
3https://www.vodafoneinnovus.com
4https://users.iit.demokritos.gr/~vagmcs/pub/splice_plus

http://homepages.inf.ed.ac.uk/rbf/CAVIARDATA1
https://zenodo.org/record/1167595
https://www.vodafoneinnovus.com
https://users.iit.demokritos.gr/~vagmcs/pub/splice_plus

70 Experimental Study

inactive. In addition, the coordinates of tracked persons are used to capture
qualitative spatial relations, e.g. two persons being relatively close to each other.
The second level contains CEs (composite events), describing the activities be-
tween multiple persons and/or objects, i.e., people meeting and moving together,
leaving an object and fighting. Similar to earlier work [Katzouris et al., 2016;
Skarlatidis et al., 2015c], we focus on the meet and move CEs, and from the
28 videos, we extract 19 sequences that contain annotations for these CEs. The
rest of the sequences in the dataset are ignored, as they do not contain positive
examples of these two target CEs. Out of the 19 sequences, 8 are annotated
with both meet and move activities, 9 are annotated only with move and 2 only
with meet. The total length of the extracted sequences is 12,869 video frames.
Each frame is annotated with the (non-)occurrence of a CE and is considered
an example instance. The dataset contains a total of 63,147 SDEs and 12,869

annotated CE instances. Out of those, there are 6,272 example instances of move
and 3,722 instances of meet. Consequently, for both CEs the number of negatives
is significantly larger than the number of positives.

The maritime dataset consists of vessel position signals sailing the Atlantic Ocean,
around Brest, France. The SDEs take the form of compressed trajectories, com-
prising “critical points”, such as communication gap (a vessel stops transmitting
position signals), vessel speed change, and turn. It has been shown that compress-
ing vessel trajectories allows for accurate trajectory reconstruction, while at the
same time improving stream reasoning times significantly [Patroumpas et al.,
2017]. We focus on the rendezVous and pilotOps CEs. The former expresses a
potentially illegal activity where two vessels are moving slowly in the open sea
and are close to each other, possibly exchanging commodities, while the latter
describes the activity of piloting a vessel. Since the dataset is unlabelled, we
produced synthetic annotation using the RTEC engine [Artikis et al., 2015] and
hand-crafted rules of rendezVous and pilotOps CEs [Pitsikalis et al., 2019]. The
CE annotation is publicly available5. We have extracted 6 sequences for each
CE from the dataset. Regarding rendezVous, the total length of the sequences
is 11,930 timestamps, while for pilotOps, sequences comprise 6,678 timestamps.
There are 1,425 instances in which rendezVous occurs and 769 in which pilotOps

occurs.

The fleet management dataset consists of commercial vehicles moving around
Greece and neighbouring countries. The SDEs include information, such as
vehicle speed changes, proximity to points of interest and operational status, such
as fuel level. We focus on the nonEconomicDriving and dangerousDriving CEs,
since they are the more complex ones. The former expresses a driving activity

5https://zenodo.org/record/2557290

https://zenodo.org/record/2557290

Experimental Study 71

where the driver is over-speeding despite having limited fuel, while the latter
describes various dangerous driving behaviours, that is, over-speeding on ice,
abrupt acceleration or braking and cornering other vehicles. Since the dataset is
unlabelled, we produced synthetic annotation similar to the maritime dataset. We
extracted 10 and 12 sequences for nonEconomicDriving and dangerousDriving

respectively. The nonEconomicDriving CE, comprises 13,255 timestamps, while
dangerousDriving comprises 13,387 timestamps. There are 1,589 instances in
which nonEconomicDriving occurs and 639 in which dangerousDriving occurs.

5.2 Experimental Setup

The evaluation concerns two learning scenarios. In the first scenario, a number of
micro-batches were selected uniformly at random and their labels were hidden
from the learner. We experimented retaining 5%, 10%, 20%, 40% and 80% of
the micro-batches labelled. The micro-batches were selected using stratified
sampling in order to retain the original class proportions in each sample. We
repeated the random selection 20 times, leading to 20 runs per supervision level,
in order to obtain a good estimate of the performance.

However, in a typical stream learning situation, the assumption of labels arriv-
ing randomly on-stream is unrealistic. A more appropriate assumption is that a
fully labelled training set appears at the beginning of the stream, or stored in a
database as historical data, while the rest of the data stream-in completely unsu-
pervised. Moreover, in contrast to the random selection scenario, labels sampled
only from a specific time frame are less representative of the actual distribution
of the underlying classes, which makes the problem more challenging.

test set train set

. . .
1 labelled

sequence sets

FIGURE 5.1: Process of creating labelled sequences from train sets. Purple and gray
dots represent train and test sequences respectively. Green dots represent fully labelled
sequences, while red dots represent completely unlabelled ones.

Our second evaluation scenario simulates this more realistic setting, using 1, 2
and 4 labelled training sequences (out of 6) for the maritime dataset, and 1,
2, 4 and 8 (out of 19) for the CAVIAR and the fleet management dataset. We
considered only sequences that contain both positive and negative examples and
generated 5 test sets. For each test set we used the remaining sequences for

72 Experimental Study

creating the train sets. More precisely, each of the remaining sequences is used to
generate multiple train sets containing a number of labelled sequences appearing
at the beginning of the train set, while the rest of the train set remains completely
unlabelled. For instance a 1-labelled sequence set contains one sequence that is
fully labelled and appears first in the train set, while every other sequence in
the set remains completely unlabelled. In order to avoid the selection bias, we
exhaustively generated all possible 1-labelled sequence sets for each test set,
while for 2, 4 and 8 we randomly selected some candidate sets. This process led
to 40 runs for the meet and nonEconomicDriving CEs, 72 for the move CE, 60 for
the dangerousDriving CE, and 30 for the pilotOps and rendezVous CEs. Since
each sequence contains different proportions of positive and negative examples,
the runs were not stratified.

Throughout the experimental analysis, we used T=100 random trees for comput-
ing the mass-based dissimilarity and set α=0.5 in order to balance the influence
of each distance measure. The accuracy results for both supervision completion
and structure learning were obtained using the F1-score. All reported statistics
are micro-averaged over the recognised instances of CEs. For the CAVIAR dataset,
the reported statistics for structure learning were collected using 10-fold cross
validation over the 19 video sequences, while complete videos were left out for
testing. The same number of folds were also used for the fleet management
dataset. In the maritime dataset, the statistics were collected using 6-fold cross
validation over the selected sequences, while complete sequences were left out
for testing.

5.3 Evaluation on Activity Recognition

First, we compare the performance of SPLICE , SPLICE and ILASP-NB on the ac-
tivity recognition dataset for both meet and move CEs. Figure 5.2 depicts the
F1-score achieved by the supervision completion on both scenarios, without any
structure learning. The results suggest that SPLICE effectively infers the missing
labels and its performance increases as more supervision is given. More impor-
tantly, it significantly outperforms SPLICE and ILASP-NB in most cases even for
high supervision levels (80% uniform supervision or 8 sequences). As expected,
the difference is greater in the more realistic scenario, where labelled data are
provided only at the beginning of the training sequence. ILASP-NB achieves
comparable accuracy to SPLICE on the random supervision scenario for low su-
pervision levels. However, it is worth noting that ILASP-NB is a batch learning
system that requires all data to be available at once and may require multiple

Experimental Study 73

R
an

do
m

Su
pe

rv
is

io
n

0 20 40 60 80
0

0.2

0.4

0.6

0.8

1

% supervision kept
F
1
-s
co
re

Ilasp-Nb
Splice (ds,k=2)
Splice (dbh,k=1)

0 20 40 60 80
0

0.2

0.4

0.6

0.8

1

% supervision kept

F
1
-s
co
re

Ilasp-Nb
Splice (ds,k=1)
Splice (dbh,k=1)

Ea
rl

y
Su

pe
rv

is
io

n

1 2 4 8
0

0.2

0.4

0.6

0.8

1

#supervised sequences

F
1
-s
co
re

Ilasp-Nb
Splice (ds,k=2)
Splice (dbh,k=1)

1 2 4 8
0

0.2

0.4

0.6

0.8

1

#supervised sequences

F
1
-s
co
re

Ilasp-Nb
Splice (ds,k=1)
Splice (dbh,k=1)

FIGURE 5.2: F1-score of supervision completion on meet (left) and move (right) as su-
pervision increases. In the first scenario, supervision arrives uniformly at random (top),
while in the second one is provided only at the beginning of the sequence (bottom).
The notation ds and dbh refers to the structural and hybrid distances respectively.

iterations to converge. As a result, ILASP-NB was about 12 times slower than
SPLICE in the activity recognition dataset.

On the other hand, the improved performance in SPLICE comes at the cost
of a decrease in runtime compared to SPLICE, i.e., the time to process both
the train and test set, as shown in Figure 5.3. Note that SPLICE is always
slower than SPLICE, since it has to update the trees for every micro-batch and
select appropriate features when required. However the penalty is tolerable in
absolute times, as it does not exceed 15 seconds. Note that runtime tends to
increase between 5% and 20% of random supervision, and then falls again, as
more supervision is given. This is due to fact that SPLICE , for efficiency reasons,
performs feature selection only when a labelled micro-batch is followed by an
unlabelled one (see Algorithm 8). In the absence of unlabelled micro-batches, we
simply store the incoming labels and perform the costly optimisation task only
when necessary, i.e., in the presence of unlabelled data. In the cases of 20% or
40% supervision, this situation occurs much more frequently than when 5% or
80% supervision is provided. A similar pattern is observed in the early supervision
setting, where feature selection only runs once, since all labelled examples arrive
at the beginning of training.

Figure 5.4 presents the structure learning results using the OLED system for con-
structing CE rules. We compare OLED using SPLICE for supervision completion
against OLED using SPLICE , and OLED alone without any supervision completion.

74 Experimental Study

R
an

do
m

Su
pe

rv
is

io
n

5 10 20 40 80
0

10

20

30

40

% supervision kept

R
u
nt
im

e
(s
ec
)

Splice (ds,k=2) Splice (dbh)

5 10 20 40 80
0

10

20

30

40

% supervision kept

R
u
nt
im

e
(s
ec
)

Splice (ds,k=1) Splice (dbh,k=1)

Ea
rl

y
Su

pe
rv

is
io

n

1 2 4 8
0

10

20

30

40

#supervised sequences

R
u
nt
im

e
(s
ec
)

1 2 4 8
0

10

20

30

40

#supervised sequences

R
u
nt
im

e
(s
ec
)

FIGURE 5.3: Runtime performance of supervision completion on meet (left) and move

(right) as supervision increases. The runtime is macro-averaged over all samples. In the
first scenario, supervision arrives uniformly at random (top), while in the second one
is provided only at the beginning of training (bottom). We do not present the runtime
of ILASP-NB here, since it is much higher than SPLICE (≈ 400 seconds) and the scaling
does not help the discussion of the results.

OLED alone only uses the supervised portion of each dataset for training, while
everything else is ignored. As expected, SPLICE-OLED and SPLICE -OLED always
outperform OLED, confirming that our supervision completion approach is indeed
very helpful for learning good CE rules in the presence of missing labels. Compar-
ing SPLICE -OLED to SPLICE-OLED the only noticeable difference is in the meet

CE, when only limited supervision is available (less than 20% or 2 sequences). In
that case, the SPLICE labels lead to better structure learning, in both supervision
settings. The same does not seem to hold for the move CE. This is mainly due
to the fact that the move activity can be captured by a single rule and thus it is
easier to learn from a small portion of data, while meet requires several distinct
rules.

5.4 Evaluation on Maritime Monitoring

For the maritime monitoring dataset, we performed the same evaluation, as the
one presented for activity recognition, for both the pilotOps and rendezVous

CEs. The F1-score of supervision completion on both scenarios, using the same
notation is presented in Figure 5.5. The results suggest that SPLICE effectively

Experimental Study 75

R
an

do
m

Su
pe

rv
is

io
n

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

% supervision kept
F
1
-s
co
re

Oled
Splice-Oled
Splice -Oled

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

% supervision kept

F
1
-s
co
re

Oled
Splice-Oled
Splice -Oled

Ea
rl

y
Su

pe
rv

is
io

n

1 2 4 8 19
0

0.2

0.4

0.6

0.8

1

#supervised sequences

F
1
-s
co
re

Oled
Splice-Oled
Splice -Oled

1 2 4 8 19
0

0.2

0.4

0.6

0.8

1

#supervised sequences

F
1
-s
co
re

Oled
Splice-Oled
Splice -Oled

FIGURE 5.4: Structure learning using OLED on meet (left) and move (right) as supervi-
sion increases. In the first scenario, supervision arrives uniformly at random (top), while
in the second one it is provided at the beginning of the training sequence (bottom).

infers the missing labels, significantly outperforms SPLICE in all cases, even for
high supervision levels (80% uniform supervision or 8 sequences), while the
difference is again larger in the second scenario, where supervision appears only
in the beginning of training. Note that ILASP-NB did not converge after 5 hours
of runtime and thus it was excluded from the evaluation.

R
an

do
m

Su
pe

rv
is

io
n

0 20 40 60 80
0

0.2

0.4

0.6

0.8

1

% supervision kept

F
1
-s
co
re

Splice (ds,k=2)
Splice (dbh,k=1)

0 20 40 60 80
0

0.2

0.4

0.6

0.8

1

% supervision kept

F
1
-s
co
re

Splice (ds,k=2)
Splice (dbh,k=1)

Ea
rl

y
Su

pe
rv

is
io

n

1 2 4
0

0.2

0.4

0.6

0.8

1

#supervised sequences

F
1
-s
co
re

Splice (ds,k=2)
Splice (dbh,k=1)

1 2 4
0

0.2

0.4

0.6

0.8

1

#supervised sequences

F
1
-s
co
re

Splice (ds,k=2)
Splice (dbh,k=1)

FIGURE 5.5: F1-score of supervision completion on pilotOps (left) and rendezVous

(right) as supervision increases.

76 Experimental Study

R
an

do
m

Su
pe

rv
is

io
n

5 10 20 40 80
0

10

20

30

40

% supervision kept

R
u
nt
im

e
(s
ec
)

Splice (ds,k=2) Splice (dbh,k=1)

5 10 20 40 80
0

10

20

30

40

% supervision kept

R
u
nt
im

e
(s
ec
)

Splice (ds,k=2) Splice (dbh,k=1)

Ea
rl

y
Su

pe
rv

is
io

n

1 2 4
0

10

20

30

40

#supervised sequences

R
u
nt
im

e
(s
ec
)

1 2 4
0

10

20

30

40

#supervised sequences

R
u
nt
im

e
(s
ec
)

FIGURE 5.6: Runtime of supervision completion on pilotOps (left) and rendezVous

(right) as supervision increases. The runtime is macro-averaged over all samples.

An interesting observation is that in the early supervision scenario the F1-score of
the pilotOps CE is very high even for 1 labelled sequence and does not change
much as the supervision increases, which indicates that one sequence has enough
labels to efficiently infer all the missing ones. Note that this performance is not
matched by the random supervision scenario, even at 80%. However, in the
random supervision scenario, in contrast to the early supervision one, some
unlabelled data arrive before all the labelled data have been collected, which
leads to mistakes.

As expected, the improved labelling accuracy of SPLICE comes with a cost in
runtime performance over SPLICE. Recall that SPLICE is slower than SPLICE

because it needs to update the trees for each micro-batch and perform feature
selection. However, the computational penalty is still tolerable since it is below
25 seconds, as shown in Figure 5.6.

In Figure 5.7, we present the structure learning results of SPLICE-OLED against
SPLICE -OLED, and OLED alone using the incomplete dataset (OLED alone uses
only the labelled examples). SPLICE -OLED clearly outperforms both SPLICE-
OLED and OLED alone by a large margin, which indicates the usefulness of the
proposed approach. On the other hand, note that SPLICE-OLED does not always
performs better than OLED alone. In particular, in some cases, such as below 10%

supervision or given a single supervised sequence of data in rendezVous may
also yield worse results, which is justified by the fact that SPLICE makes mistakes

Experimental Study 77

R
an

do
m

Su
pe

rv
is

io
n

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

% supervision kept

F
1
-s
co
re

Oled
Splice-Oled
Splice -Oled

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

% supervision kept

F
1
-s
co
re

Oled
Splice-Oled
Splice -Oled

Ea
rl

y
Su

pe
rv

is
io

n

1 2 4 6
0

0.2

0.4

0.6

0.8

1

#supervised sequences

F
1
-s
co
re

Oled
Splice-Oled
Splice -Oled

1 2 4 6
0

0.2

0.4

0.6

0.8

1

#supervised sequences
F
1
-s
co
re

Oled
Splice-Oled
Splice -Oled

FIGURE 5.7: Structure learning on pilotOps (left) and rendezVous (right) as super-
vision increases. In the first scenario, supervision arrives uniformly at random (top),
while in the second one is provided at the beginning of the training sequence (bottom).

that misguide structure learning. However, as soon as, enough supervision is
provided it performs similar to OLED alone or even better.

78 Experimental Study

R
an

do
m

Su
pe

rv
is

io
n

0 20 40 60 80
0

0.2

0.4

0.6

0.8

1

% supervision kept

F
1
-s
co
re

Ilasp-Nb
Splice (ds,k=2)
Splice (dbh,k=1)

0 20 40 60 80
0

0.2

0.4

0.6

0.8

1

% supervision kept

F
1
-s
co
re

Ilasp-Nb
Splice (ds,k=1)
Splice (dbh,k=1)

Ea
rl

y
Su

pe
rv

is
io

n

1 2 4 8
0

0.2

0.4

0.6

0.8

1

#supervised sequences

F
1
-s
co
re

Ilasp-Nb
Splice (ds,k=2)
Splice (dbh,k=1)

1 2 4 8
0

0.2

0.4

0.6

0.8

1

#supervised sequences

F
1
-s
co
re

Ilasp-Nb
Splice (ds,k=1)
Splice (dbh,k=1)

FIGURE 5.8: F1-score of supervision completion on nonEconomicDriving (left) and
dangerousDriving (right) as supervision increases.

R
an

do
m

Su
pe

rv
is

io
n

5 10 20 40 80

100.8

101

101.2

101.4

101.6

% supervision kept

R
u
nt
im

e
(s
ec
)

Splice (ds,k=2) Splice (dbh,k=1)

5 10 20 40 80
0

10

20

30

40

% supervision kept

R
u
nt
im

e
(s
ec
)

Splice (ds,k=1) Splice (dbh,k=1)

Ea
rl

y
Su

pe
rv

is
io

n

1 2 4 8
0

10

20

30

40

#supervised sequences

R
u
nt
im

e
(s
ec
)

1 2 4 8
0

10

20

30

40

#supervised sequences

R
u
nt
im

e
(s
ec
)

FIGURE 5.9: Runtime of supervision completion on nonEconomicDriving (left) and
dangerousDriving (right) as supervision increases. The runtime is macro-averaged
over all samples.

5.5 Evaluation on Fleet Management

For the fleet management dataset, the F1-score of supervision completion on both
scenarios for the nonEconomicDriving and dangerousDriving CEs is depicted

Experimental Study 79

in Figure 5.8. The results appear to be consistent with the previous tasks, since
SPLICE yields the best overall performance. However, in this dataset the differ-
ence with SPLICE is smaller, due to the fact that fleet management dataset does
not contain irrelevant or noisy features. Thus, the difference in performance is
only due to the graph synopsis, that yields improved solutions, instead of the
hybrid distance that accounts for feature significance. ILASP-NB, on the other
hand, achieves comparable performance only in the random supervision scenario
for nonEconomicDriving.

The absolute difference in runtime cost between SPLICE and SPLICE is similar to
that observed in the activity recognition dataset, as shown in Figure 5.9. Briefly,
the computational penalty is typically below 20 seconds, due to the updates of
the trees and feature selection. ILASP-NB, on the other hand, is 3 times slower
than SPLICE , since it requires all the data to be available at once.

R
an

do
m

Su
pe

rv
is

io
n

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

% supervision kept

F
1
-s
co
re

Oled
Splice-Oled
Splice -Oled

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

% supervision kept

F
1
-s
co
re

Oled
Splice-Oled
Splice -Oled

Ea
rl

y
Su

pe
rv

is
io

n

1 2 4 8
0

0.2

0.4

0.6

0.8

1

#supervised sequences

F
1
-s
co
re

Oled
Splice-Oled
Splice -Oled

1 2 4 8
0

0.2

0.4

0.6

0.8

1

#supervised sequences

F
1
-s
co
re

Oled
Splice-Oled
Splice -Oled

FIGURE 5.10: Structure learning on nonEconomicDriving (left) and
dangerousDriving (right) as supervision increases. In the first scenario, super-
vision arrives uniformly at random (top), while in the second one, supervision is
provided only at the beginning of the training sequence (bottom).

Finally, in Figure 5.10, we present the structure learning results of SPLICE-OLED

against SPLICE -OLED, and OLED alone using the incomplete dataset (OLED alone
uses only the labelled examples). SPLICE -OLED outperforms SPLICE-OLED in
only one of the four subfigures, namely nonEconomicDriving under random
supervision. This is in agreement with the supervision completion results, shown
in Figure 5.8.

80 Experimental Study

5.6 Discussion

In this section, we analyze the significance of the hybrid distance measure and
the impact of the batch size on our proposed approaches. First, we present an
ablation study over the distance components of SPLICE and discuss when each
component may or may not be useful for improving performance. Then, we argue
that the batch size does not significantly impact SPLICE , due to its robust graph
construction, while on the other hand, it may impact the perfromance of SPLICE.

5.6.1 Ablation Study

In order to further examine the contribution of each of the proposed improve-
ments over SPLICE, in Table 5.1 we present the results of an ablation study on
the activity recognition dataset, comparing the different components of SPLICE

against each other. The first important observation is that the structural distance
(ds) performs very well, which indicates the importance of temporal connec-
tivity. Mass-based dissimilarity alone (m̃) performs well enough in meet but
rather poorly in move, especially in the early supervision setting. However, when
combined with the structural distance (dh) it always performs better than the
structural distance alone. Another interesting observation is that while feature se-
lection on the structural distance (dbs) does not always achieve better results than
the structural distance alone (ds), it yields a synergistic effect when combined
with the mass-based dissimilarity (dbh). For instance, in the random supervision
setting, using dbh , instead of dh, increases F1-score from 0.63 to 0.67 for meet (cor-
responding to 242 errors on average), while in the early supervision setting, it
increases F1-score from 0.65 to 0.7 for meet and 0.7 to 0.73 for move (correspond-
ing to 162 and 136 errors respectively). Therefore, the proposed hybrid measure
achieves the best overall performance.

Similar to the task of human activity recognition, we analyse in the maritime
monitoring dataset, the contribution of each of the proposed improvements over
SPLICE. In Table 5.2 we compare the different components of SPLICE against
each other. First, note that the structural distance (ds) alone again performs well
enough, given enough supervision (10% or 2 supervised sequences). Mass-based
dissimilarity alone (m̃) seems to perform well in the pilotOps CE, but yields very
poor performance in the rendezVous CE. Similar to activity recognition, when
combined with the structural distance (dh) a small, but consistent improvement of
the performance is observed. In contrast to activity recognition, feature selection
on the structural distance (dbs) does not seem to improve the performance further.
This is due to the synthetic supervision of the maritime dataset, which leads to

Experimental Study 81

CE Distance
Random Supervision Early Supervision
5% 10% 1 2

meet

ds 0.62 0.70 0.56 0.69
dbs 0.59 0.70 0.64 0.71
m 0.65 0.75 0.64 0.70
dh 0.63 0.76 0.65 0.73
dbh 0.67 0.77 0.70 0.76

move

ds 0.57 0.64 0.67 0.71
dbs 0.58 0.67 0.69 0.71
m 0.56 0.68 0.60 0.54
dh 0.57 0.69 0.70 0.73
dbh 0.58 0.69 0.73 0.75

TABLE 5.1: Comparison of SPLICE on meet and move using the simple structural dis-
tance (ds) and the hybrid distance (dbh).

noise-free labels and features. Moreover, there are three irrelevant features in the
dataset but only one of them appears frequently in the positive examples of the
CEs, which renders the measurements of ds quite similar to dbs . Feature selection
in this context is not expected to add value.

CE Distance
Random Supervision Early Supervision
5% 10% 1 2

rendezVous

ds 0.59 0.70 0.69 0.79
dbs 0.59 0.70 0.69 0.79
m 0.53 0.65 0.53 0.53
dh 0.62 0.75 0.74 0.81
dbh 0.62 0.75 0.74 0.81

pilotOps

ds 0.47 0.63 0.78 0.90
dbs 0.47 0.63 0.78 0.90
m 0.56 0.69 0.94 0.94
dh 0.56 0.69 0.95 0.96
dbh 0.56 0.69 0.95 0.96

TABLE 5.2: Comparison of SPLICE on pilotOps and rendezVous, using the simple
structural distance (ds) and the hybrid distance (dbh).

Finally, the results in the fleet management dataset do not provide any insight
in the discussion, since there are no irrelevant or noisy features in the dataset,
leading to very similar distance measurements. As a general conclusion from
the ablation studies that we performed in these datasets, SPLICE using all of its
features, seems to provide the best performance, irrespective of the supervision
setting.

82 Experimental Study

CE Batch size
Number of supervised sequences

1 2 4 8

meet

10 0.44/0.69 0.59/0.78 0.73/0.78 0.78/0.93
25 0.43/0.69 0.57/0.74 0.72/0.78 0.78/0.93
50 0.42/0.69 0.51/0.77 0.67/0.77 0.77/0.93
100 0.42/0.69 0.56/0.76 0.75/0.80 0.77/0.93

move

10 0.66/0.73 0.73/0.75 0.71/0.79 0.84/0.94
25 0.66/0.73 0.74/0.74 0.72/0.79 0.84/0.94
50 0.66/0.73 0.74/0.78 0.74/0.81 0.84/0.94
100 0.66/0.73 0.73/0.75 0.73/0.80 0.84/0.94

TABLE 5.3: F1-score as batch size increases for meet and move CEs: SPLICE/SPLICE .

5.6.2 Batch Size Impact

Table 5.3 presents the change in performance as the batch size increases on the
activity recognition dataset. The F1-score of SPLICE tends to fluctuate more than
that of SPLICE , as the batch size increases. For instance, in the meet CE, when 2

or 4 supervised sequences are provided, the F1-score of SPLICE varies from 0.01

to 0.08, while SPLICE varies from 0.01 to 0.04. Corresponding changes are also
noticeable when 1 or 8 supervised sequences are given to SPLICE, while SPLICE

does not vary at all in these cases. Such variations also appear at a much smaller
scale in move. These results suggest that SPLICE seems to be more robust to
different batch sizes than SPLICE, which indicates the importance of the graph
construction process.

CE Batch size
Number of supervised sequences

1 2 4

pilotOps

10 0.63/0.96 0.88/0.97 0.92/0.97
25 0.69/0.96 0.85/0.96 0.91/0.97
50 0.71/0.96 0.88/0.96 0.91/0.97

100 0.61/0.95 0.70/0.96 0.75/0.97

rendezVous

10 0.63/0.74 0.77/0.86 0.87/0.93
25 0.58/0.74 0.72//0.86 0.84/0.90
50 0.56/0.74 0.75/0.86 0.83/0.90

100 0.48/0.75 0.61/0.81 0.83/0.92

TABLE 5.4: F1-score of pilotOps, rendezVous for varying batch sizes: SPLICE/SPLICE .

In Table 5.4, we present the change in F1-score as the batch size increases for
the matitime monitoring dataset. SPLICE is more robust than SPLICE, and this
is more apparent in this dataset, compared to the activity recognition one. On
pilotOps, when 1 supervised sequence is provided, the F1-score of SPLICE varies
from 0.02 to 0.1, while that of SPLICE varies only by 0.01. For 2 supervised

Experimental Study 83

sequences the variation is even greater, since the F1-score of SPLICE varies from
0.03 to 0.18, in contrast to that of SPLICE where the variation remains at 0.01.
The same holds for the rendezVous CE, where for 1 supervised sequence, SPLICE

varies from 0.08 to 0.15, while SPLICE varies only by 0.01.

5.7 Summary

The experimental results on the three real-life datasets showed that our proposed
method can effectively learn Event Calculus theories even in the presence of ir-
relevant or noisy features. In such cases, it outperforms its predecessor (SPLICE),
while in the simpler cases, such as in the fleet management dataset, it yields at
least as good performance. On the other hand, ILASP-NB can achieve compara-
ble accuracy in few cases for limited supervision but at the cost of significantly
increased runtime performance. Although ILASP is a state-of-the-art ILP learn-
ing system that can learn Event Calculus, it is not designed for semi-supervised
learning. Moreover, the co-training procedure of ILASP-NB is not practical for
temporal data and may not converge in real-life datasets.

6 | Conclusions and Future Work

“Science never solves a problem without creating ten more.”
— George Bernard Shaw

In this thesis we focused on scalable semi-supervised learning for complex event
recognition applications and proposed two methods for learning complex event
rules from partially supervised training sequences. In Chapter 1 we briefly pre-
sented the basics of symbolic event recognition and pointed out the main ad-
vantages of the logic-based approaches, such as, the ability for robust temporal
reasoning and the availability of machine learning tools that facilitate the auto-
mated discovery of complex event rules from data streams. Then, we argued that
the assumption of a fully-labelled training sequence that arrives for processing is
unrealistic in real-life applications, since usually sparse, infrequent labels are pro-
vided either on-stream or in the form of historical data. In Chapter 2 we briefly
introduced the Event Calculus formalism and the OLED system for learning such
CE rules from data streams. Then, we presented the background on graph-based
methods to semi-supervised learning and distance metrics required for this thesis.
Finally, we provided an overview of related approaches and argued that they are
not appropriate for learning CE rules from data streams, either due to scalability
issues or due to other assumptions (e.g., numerical data). In Chapters 3 and 4 we
proposed two scalable approaches for inferring the missing labels in a partially
supervised training sequence, thus enabling any supervised learner to operate
on the completed training data. In Chapter 5, we presented an experimental
study showing that both of these approaches can efficiently complete the missing
labels and improve the predictive accuracy of the underlying structure learner.
Moreover, the results suggest that they are efficient enough to be used in large
temporal datasets. In what remains we conclude this thesis by summarising the
basic traits of our proposed approaches and the respective experimental results,
while we also provide some directions for future research.

86 Conclusions and Future Work

6.1 Conclusions

In Chapter 3, we presented SPLICE, a novel approach to online structure learning
of CE rules that operates on partially supervised training sequences. SPLICE infers
the missing supervision continuously as the data arrive in micro-batches. To that
end, it employs a graph-cut minimisation technique and a distance function for
first-order logic to derive labels for unlabelled data, by computing their distance
to their labelled counterparts. As it processes the input stream, SPLICE caches
previously seen labelled examples for future usage and filters noisy, contradicting
labelled examples that may compromise the overall accuracy of the learning task.
Then, each fully-supervised micro-batch can be used by any online supervised
structure learning system, such as OLED, in order to derive new or enhance
existing complex event rules.

In Chapter 4, we presented SPLICE , an improved approach to online structure
learning of CE rules from partially-supervised training sequences. Similar to its
predecessor (SPLICE), the new method infers the missing labels continuously as
the data arrive, and passes them on to an online supervised structure learner
that constructs CE rules. In contrast to SPLICE, SPLICE employs a hybrid dis-
tance measure combining a structural distance optimised for kNN classification
through feature selection, and a data-driven measure, based on mass estimation.
The combined measure exploits the labelled data for supervised metric learning
and the unlabelled data for estimating the distribution of examples. Moreover,
SPLICE constructs a temporal graph and maintains a synopsis of the data stream
to achieve robust labelling.

In Chapter 5, we presented experimental results in the domain of complex event
recognition, using a benchmark dataset for activity recognition, a real dataset for
maritime monitoring, and a dataset for fleet management. The results showed
that SPLICE can enable the underlying structure learner to learn good CE rules,
even in the presence of very limited given annotation. On the other hand, SPLICE

outperforms its predecessor (SPLICE) in terms of completing the missing labels
and improving the predictive accuracy of the underlying structure learner. More-
over, it seems particularly effective when the supervision is provided only at the
beginning of the stream. Finally, the comparison to a batch learning system
combining ILASP and Naive Bayes, to perform a form of co-training, resulted in
inferior results and much higher computational requirements.

Conclusions and Future Work 87

6.2 Future Work

There are several interesting directions in which we indend to extend the work
presented in this thesis. The main ones are presented below:

Active Learning

SPLICE is capable of identifying noisy or irrelevant features using a novel in-
formed distance measure. However, the proposed approach still may not correctly
infer the labels of rare patterns or emerging classes. To that end, we would like to
investigate active learning techniques [Fu et al., 2013], in order to select promis-
ing example instances or areas of the sample space and request user information
to further enhance the predictions, in the presence of very noisy labels or concept
drift. A straightforward approach of achieving that, similar to the uncertainty
sampling methods [Culotta and McCallum, 2005], is to exploit the real-valued
labelling generated by the harmonic solution (see Section 2.2.1). Label values
closer to the decision boundary, that is closer to zero, can be considered more
uncertain and be chosen for investigation.

Distributed Semi-Supervised Learning

The scalability of the learning systems presented in this work can be further im-
proved, via parallelizing parts of the learning task and distributing the workload
over multiple processing cores or computing nodes. Some degree of paralleliza-
tion already exists in the methods that we presented in this thesis, e.g., both
methods compute the distances between examples in parallel. However, there
are other promising directions that we have indentified for further improving
the performance, such as building and updating the Half-Space Trees in parallel.
Additionally, there are promising ideas for distributing the computation by par-
titioning the input data over multiple computing nodes, using the ground query
atom constants. For instance, every distinct pair of IDs involved in a query may
be processed by a different computing node. To that end, an efficient data parti-
tioning technique is necessery, in order to guarantee good load balancing among
the nodes, while maintaining low data redundancy. The resulting distributed
version of SPLICE can be combined with a distributed version of OLED [Katzouris
et al., 2019] in order to learn CE rules efficiently.

Bibliography

Abdulsalam, H., Skillicorn, D. B., and Martin, P. (2011). Classification using
streaming random forests. IEEE Trans. Knowl. Data Eng., 23(1):22–36.

Abney, S. P. (2002). Bootstrapping. In Proceedings of the 40th Annual Meeting of
the Association for Computational Linguistics, pages 360–367.

Aha, D. W., Kibler, D. F., and Albert, M. K. (1991). Instance-based learning
algorithms. Machine Learning, 6:37–66.

Alphonse, É. and Matwin, S. (2002). Feature subset selection and inductive
logic programming. In Sammut, C. and Hoffmann, A. G., editors, Proceedings
of the 9th International Conference on Machine Learning, pages 11–18. Morgan
Kaufmann.

Anicic, D., Rudolph, S., Fodor, P., and Stojanovic, N. (2012). Stream reasoning
and complex event processing in ETALIS. Semantic Web, 3(4):397–407.

Arauzo-Azofra, A., Benítez, J. M., and Castro, J. L. (2008). Consistency measures
for feature selection. J. Intell. Inf. Syst., 30(3):273–292.

Artikis, A., Katzouris, N., Correia, I., Baber, C., Morar, N., Skarbovsky, I., Fournier,
F., and Paliouras, G. (2017). A prototype for credit card fraud management:
Industry paper. In Proceedings of the 11th ACM International Conference on
Distributed and Event-based Systems, pages 249–260. ACM.

Artikis, A., Paliouras, G., Portet, F., and Skarlatidis, A. (2010). Logic-based
representation, reasoning and machine learning for event recognition. In
Proceedings of the 4th ACM International Conference on Distributed Event-Based
Systems, pages 282–293.

Artikis, A., Sergot, M. J., and Paliouras, G. (2015). An event calculus for event
recognition. IEEE Transactions on Knowledge and Data Engineering, 27(4):895–
908.

Artikis, A., Skarlatidis, A., Portet, F., and Paliouras, G. (2012). Logic-based event
recognition. Knowledge Engineering Review, 27(4):469–506.

90 Bibliography

Aryal, S., Ting, K. M., Haffari, G., and Washio, T. (2014). Mp-dissimilarity: A
data dependent dissimilarity measure. In Proceedings of the IEEE International
Conference on Data Minin (ICDM), pages 707–712.

Athanasopoulos, G., Paliouras, G., Vogiatzis, D., Tzortzis, G., and Katzouris, N.
(2018). Predicting the evolution of communities with online inductive logic
programming. In Proceedings of the 25th International Symposium on Temporal
Representation and Reasoning (TIME), pages 4:1–4:20.

Azran, A. (2007). The rendezvous algorithm: multiclass semi-supervised learn-
ing with markov random walks. In Proceedings of the 24th International Con-
ference on Machine Learning, pages 49–56.

Bachman, P., Alsharif, O., and Precup, D. (2014). Learning with pseudo-
ensembles. In Advances in Neural Information Processing Systems 27: Annual
Conference on Neural Information Processing Systems, pages 3365–3373.

Balcan, M., Blum, A., and Yang, K. (2004). Co-training and expansion: Towards
bridging theory and practice. In Advances in Neural Information Processing
Systems 17, pages 89–96.

Benabdeslem, K. and Hindawi, M. (2014). Efficient semi-supervised feature
selection: Constraint, relevance, and redundancy. IEEE Trans. Knowl. Data
Eng., 26(5):1131–1143.

Bennett, K. P., Demiriz, A., and Maclin, R. (2002). Exploiting unlabeled data
in ensemble methods. In Proceedings of the 8th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pages 289–296.

Bie, T. D. and Cristianini, N. (2003). Convex methods for transduction. In
Advances in Neural Information Processing Systems 16, pages 73–80.

Bisson, G. (1992a). Conceptual clustering in a first order logic representation.
In Proceedinds of the 10th European Conference on Artificial Intelligence, pages
458–462. Wiley.

Bisson, G. (1992b). Learning in FOL with a similarity measure. In Proceedings of
the 10th National Conference on Artificial Intelligence, pages 82–87. AAAI Press
/ MIT Press.

Blockeel, H. and Raedt, L. D. (1998). Top-down induction of first-order logical
decision trees. Artificial Intelligence, 101(1-2):285–297.

Blockeel, H., Raedt, L. D., Jacobs, N., and Demoen, B. (1999). Scaling up
inductive logic programming by learning from interpretations. Data Mining
and Knowledge Discovery, 3(1):59–93.

Bibliography 91

Blum, A. and Chawla, S. (2001). Learning from labeled and unlabeled data
using graph mincuts. In Proceedings of the 18th International Conference on
Machine Learning, pages 19–26. Morgan Kaufmann.

Blum, A., Lafferty, J. D., Rwebangira, M. R., and Reddy, R. (2004). Semi-
supervised learning using randomized mincuts. In Proceedings of the 21st
International Conference on Machine Learning. ACM.

Blum, A. and Mitchell, T. M. (1998). Combining labeled and unlabeled data with
co-training. In Proceedings of the 11th Annual Conference on Computational
Learning Theory, pages 92–100. ACM.

Bohnebeck, U., Horváth, T., and Wrobel, S. (1998). Term comparisons in first-
order similarity measures. In Proceedings of the 8th International Workshop on
Inductive Logic Programming, pages 65–79. Springer.

Brendel, W., Fern, A., and Todorovic, S. (2011). Probabilistic event logic for
interval-based event recognition. In The 24th IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pages 3329–3336.

Broda, K., Clark, K., Miller, R., and Russo, A. (2009). SAGE: A logical agent-
based environment monitoring and control system. In Proceedings of the Euro-
pean Conference on Ambient Intelligence, pages 112–117.

Brown, G. (2009). A new perspective for information theoretic feature selection.
In Proceedings of the 12th International Conference on Artificial Intelligence and
Statistics (AISTATS), pages 49–56.

Bruns, R., Dunkel, J., and Offel, N. (2019). Learning of complex event processing
rules with genetic programming. Expert Syst. Appl., 129:186–199.

Callens, L., Carrault, G., Cordier, M., Fromont, É., Portet, F., and Quiniou, R.
(2008). Intelligent adaptive monitoring for cardiac surveillance. In Proceedings
of the 18th European Conference on Artificial Intelligence (ECAI), pages 653–657.

Chandrashekar, G. and Sahin, F. (2014). A survey on feature selection methods.
Computers & Electrical Engineering, 40(1):16–28.

Chapelle, O., Schölkopf, B., and Zien, A. (2006). Semi-Supervised Learning. MIT
Press.

Chapelle, O., Sindhwani, V., and Keerthi, S. S. (2008). Optimization techniques
for semi-supervised support vector machines. J. Mach. Learn. Res., 9:203–233.

Chaudet, H. (2006). Extending the event calculus for tracking epidemic spread.
Artif. Intell. Medicine, 38(2):137–156.

92 Bibliography

Chen, B., Liu, H., Chai, J., and Bao, Z. (2009). Large margin feature weighting
method via linear programming. IEEE Trans. Knowl. Data Eng., 21(10):1475–
1488.

Collobert, R., Sinz, F. H., Weston, J., and Bottou, L. (2006). Large scale
transductive svms. J. Mach. Learn. Res., 7:1687–1712.

Corduneanu, A. and Jaakkola, T. S. (2003). On information regularization. In
Proceedings of the 19th Conference in Uncertainty in Artificial Intelligence, pages
151–158.

Cugola, G. and Margara, A. (2012). Processing flows of information: From
data stream to complex event processing. ACM Computing Survey, 44(3):15:1–
15:62.

Culotta, A. and McCallum, A. (2005). Reducing labeling effort for structured
prediction tasks. In Proceedings of the 20th National Conference on Artificial
Intelligence, page 746–751. AAAI Press.

Culp, M. and Michailidis, G. (2008). An iterative algorithm for extending
learners to a semi-supervised setting. Journal of Computational and Graphical
Statistics, 17(3):545–571.

d’Alché-Buc, F., Grandvalet, Y., and Ambroise, C. (2001). Semi-supervised
marginboost. In Advances in Neural Information Processing Systems 14, pages
553–560.

De Raedt, L. and Dehaspe, L. (1997). Clausal discovery. Machine Learning,
26(2-3):99–146.

de Sousa, C. A. R., Rezende, S. O., and Batista, G. E. A. P. A. (2013). Influence of
graph construction on semi-supervised learning. In Proceedings of the European
Conference on Machine Learning and Knowledge Discovery in Databases, pages
160–175.

Delalleau, O., Bengio, Y., and Roux, N. L. (2005). Efficient non-parametric
function induction in semi-supervised learning. In Proceedings of the 10th
International Workshop on Artificial Intelligence and Statistics (AISTATS), pages
96–103.

Dempster, A. P., Laird, N. M., and Rubin, D. B. (1977). Maximum likelihood
from incomplete data via the em algorithm. Journal of the Royal Statistical
Sociaty, 39(1):1–38.

Deng, C. and Guo, M. (2011). A new co-training-style random forest for
computer aided diagnosis. J. Intell. Inf. Syst., 36(3):253–281.

Bibliography 93

Dhurandhar, A. and Dobra, A. (2012). Distribution-free bounds for relational
classification. Knowledge and Information Systems, 31(1):55–78.

Domingos, P. M. and Hulten, G. (2000). Mining high-speed data streams. In
Proceedings of the 6th International Conference on Knowledge Discovery and Data
Mining, pages 71–80.

Dörfler, F. and Bullo, F. (2013). Kron reduction of graphs with applications to
electrical networks. IEEE Trans. on Circuits and Systems, 60-I(1):150–163.

Dousson, C. and Maigat, P. L. (2007). Chronicle recognition improvement using
temporal focusing and hierarchization. In Proceedings of the 20th International
Joint Conference on Artificial Intelligence (IJCAI), pages 324–329.

Dries, A. and Raedt, L. D. (2009). Towards clausal discovery for stream min-
ing. In Proceedings of the 19th International Conference on Inductive Logic
Programming (ILP), pages 9–16.

Du, J., Ling, C. X., and Zhou, Z. (2011). When does cotraining work in real
data? IEEE Trans. Knowl. Data Eng., 23(5):788–799.

Dyer, K. B. and Polikar, R. (2012). Semi-supervised learning in initially labeled
non-stationary environments with gradual drift. In The 2012 International
Joint Conference on Neural Networks (IJCNN), pages 1–9.

Emde, W. and Wettschereck, D. (1996). Relational instance-based learning. In
Proceedings of the 13th International Conference on Machine Learning, pages
122–130. Morgan Kaufmann.

Etzion, O. and Niblett, P. (2010). Event Processing in Action. Manning Publica-
tions Company.

Falcionelli, N., Sernani, P., de la Torre, A. B., Mekuria, D. N., Calvaresi, D.,
Schumacher, M., Dragoni, A. F., and Bromuri, S. (2019). Indexing the event
calculus: Towards practical human-readable personal health systems. Artif.
Intell. Medicine, 96:154–166.

Ferilli, S., Basile, T. M. A., Biba, M., Mauro, N. D., and Esposito, F. (2009). A
general similarity framework for horn clause logic. Fundam. Inform., 90(1-
2):43–66.

Fu, Y., Zhu, X., and Li, B. (2013). A survey on instance selection for active
learning. Knowl. Inf. Syst., 35(2):249–283.

Fürnkranz, J., Gamberger, D., and Lavrac, N. (2012). Foundations of Rule
Learning. Cognitive Technologies. Springer.

94 Bibliography

Gama, J. (2010). Knowledge Discovery from Data Streams. Chapman and Hall /
CRC Data Mining and Knowledge Discovery Series. CRC Press.

Gayathri, K. S., Easwarakumar, K. S., and Elias, S. (2017). Probabilistic ontology
based activity recognition in smart homes using markov logic network. Knowl.
Based Syst., 121:173–184.

Getoor, L. and Taskar, B. (2007). Introduction to Statistical Relational Learning.
MIT Press.

Ghahramani, Z. and Jordan, M. I. (1993). Supervised learning from incomplete
data via an EM approach. In Proceedings of the 7th Conference on Advances in
Neural Information Processing Systems 6, pages 120–127. Morgan Kaufmann.

Giatrakos, N., Alevizos, E., Artikis, A., Deligiannakis, A., and Garofalakis, M. N.
(2020). Complex event recognition in the big data era: a survey. VLDB J.,
29(1):313–352.

Gogate, V., Webb, W. A., and Domingos, P. M. (2010). Learning efficient markov
networks. In Proceedings of the 24th Annual Conference on Neural Information
Processing Systems 2010, pages 748–756. Curran Associates, Inc.

Goldberger, J., Roweis, S. T., Hinton, G. E., and Salakhutdinov, R. (2004). Neigh-
bourhood components analysis. In Advances in Neural Information Processing
Systems 17, pages 513–520.

Goldman, S. A. and Zhou, Y. (2000). Enhancing supervised learning with
unlabeled data. In Proceedings of the Seventeenth International Conference on
Machine Learning (ICML 2000), Stanford University, Stanford, CA, USA, June
29 - July 2, 2000, pages 327–334. Morgan Kaufmann.

Grandvalet, Y. and Bengio, Y. (2004). Semi-supervised learning by entropy
minimization. In Advances in Neural Information Processing Systems 17, pages
529–536.

Grandvalet, Y., d’Alché-Buc, F., and Ambroise, C. (2001). Boosting mixture
models for semi-supervised learning. In Proceedings of the 2001 International
Conference on Artificial Neural Networks, pages 41–48.

Grez, A., Riveros, C., and Ugarte, M. (2019). A formal framework for com-
plex event processing. In Proceedings of the 22nd International Conference on
Database Theory, pages 5:1–5:18.

Grez, A., Riveros, C., Ugarte, M., and Vansummeren, S. (2020). On the expres-
siveness of languages for complex event recognition. In Proceedings of the 23rd
International Conference on Database Theory, pages 15:1–15:17.

Bibliography 95

Guillou, X. L., Cordier, M., Robin, S., and Rozé, L. (2008). Chronicles for on-line
diagnosis of distributed systems. In Proceedings of the 18th European Conference
on Artificial Intelligence, pages 194–198.

Guyon, I., Nikravesh, M., Gunn, S. R., and Zadeh, L. A., editors (2006). Feature
Extraction - Foundations and Applications, volume 207 of Studies in Fuzziness
and Soft Computing. Springer.

Haffari, G. and Sarkar, A. (2007). Analysis of semi-supervised learning with the
yarowsky algorithm. In Proceedings of the 23rd Conference on Uncertainty in
Artificial Intelligence, pages 159–166.

Hausdorff, F. (1962). Set Theory. AMS Chelsea Publishing Series. Chelsea
Publishing Company.

Hoeffding, W. (1963a). Probability inequalities for sums of bounded random
variables. Journal of the American Statistical Association, 58(301):13–30.

Hoeffding, W. (1963b). Probability inequalities for sums of bounded random
variables. Journal of the American Statistical Association, 58(301):13–30.

Horváth, T., Wrobel, S., and Bohnebeck, U. (2001). Relational instance-based
learning with lists and terms. Mach. Learn., 43(1/2):53–80.

Huang, L., Liu, X., Ma, B., and Lang, B. (2015). Online semi-supervised annota-
tion via proxy-based local consistency propagation. Neurocomputing, 149:1573–
1586.

Huynh, T. N. and Mooney, R. J. (2011). Online Structure Learning for Markov
Logic Networks. In Proceedings of European Conference on Machine Learning
and Knowledge Discovery in Databases, volume 2, pages 81–96.

Jebara, T., Wang, J., and Chang, S. (2009). Graph construction and b-matching
for semi-supervised learning. In Proceedings of the 26th Annual International
Conference on Machine Learning, pages 441–448.

Joachims, T. (2003). Transductive learning via spectral graph partitioning. In
Proceedings of the 20th International Conference on Machine Learning (ICML),
pages 290–297.

Kafali, Ö., Romero, A. E., and Stathis, K. (2017). Agent-oriented activity recogni-
tion in the event calculus: An application for diabetic patients. Comput. Intell.,
33(4):899–925.

Karasuyama, M. and Mamitsuka, H. (2013). Manifold-based similarity adap-
tation for label propagation. In Proceedings of the 27th Annual Conference on
Neural Information Processing Systems, pages 1547–1555.

96 Bibliography

Katzouris, N. (2017). Scalable Relational Learning for Event Recognition. PhD
thesis, National and Kapodistrian University of Athens.

Katzouris, N., Artikis, A., and Paliouras, G. (2015). Incremental learning of
event definitions with inductive logic programming. Machine Learning, 100(2-
3):555–585.

Katzouris, N., Artikis, A., and Paliouras, G. (2016). Online learning of event
definitions. Theory and Practice of Logic Programming, 16(5-6):817–833.

Katzouris, N., Artikis, A., and Paliouras, G. (2019). Parallel online event calculus
learning for complex event recognition. Future Generation Comp. Syst., 94:468–
478.

Katzouris, N., Michelioudakis, E., Artikis, A., and Paliouras, G. (2018). Online
learning of weighted relational rules for complex event recognition. In Pro-
ceedings of European Conference on Machine Learning and Knowledge Discovery
in Databases, pages 396–413.

Kim, J., Jeon, M., Park, H., Bae, S., Bang, S., and Park, Y. (2019). An approach
for recognition of human’s daily living patterns using intention ontology and
event calculus. Expert Syst. Appl., 132:256–270.

Kirsten, M. and Wrobel, S. (1998). Relational distance-based clustering. In
Proceedings of the 8th International Workshop on Inductive Logic Programming,
pages 261–270. Springer.

Kirsten, M. and Wrobel, S. (2000). Extending k-means clustering to first-order
representations. In Proceedings of the 10th International Conference on Inductive
Logic Programming, pages 112–129. Springer.

Kowalski, R. A. and Sergot, M. J. (1986). A logic-based calculus of events. New
Generation Computing, 4(1):67–95.

Krempl, G., Zliobaite, I., Brzezinski, D., Hüllermeier, E., Last, M., Lemaire, V.,
Noack, T., Shaker, A., Sievi, S., Spiliopoulou, M., and Stefanowski, J. (2014).
Open challenges for data stream mining research. SIGKDD Explorations,
16(1):1–10.

Kuhn, H. W. (1955). The hungarian method for the assignment problem. Naval
Research Logistics Quarterly, 2:83–97.

Kulis, B. (2013). Metric learning: A survey. Foundations and Trends in Machine
Learning, 5(4):287–364.

Landwehr, N., Kersting, K., and Raedt, L. D. (2007). Integrating naïve bayes and
FOIL. Journal of Machine Learning Research, 8:481–507.

Bibliography 97

Landwehr, N., Passerini, A., Raedt, L. D., and Frasconi, P. (2006). kfoil: Learning
simple relational kernels. In Proceedings of the 21st National Conference on
Artificial Intelligence, pages 389–394. AAAI Press.

Law, M., Russo, A., and Broda, K. (2016). Iterative learning of answer set
programs from context dependent examples. Theory Pract. Log. Program.,
16(5-6):834–848.

Law, M., Russo, A., and Broda, K. (2018). Inductive learning of answer set
programs from noisy examples. Advances in Cognitive Systems.

Lawrence, N. D. and Jordan, M. I. (2004). Semi-supervised learning via gaussian
processes. In Advances in Neural Information Processing Systems 17, pages 753–
760.

Lee, S., Ganapathi, V., and Koller, D. (2006). Efficient structure learning of
markov networks using l1-regularization. In Proceedings of the 20th Annual
Conference on Neural Information Processing Systems, pages 817–824. MIT
Press.

Leistner, C., Saffari, A., Santner, J., and Bischof, H. (2009). Semi-supervised
random forests. In Proceedings of the IEEE 12th International Conference on
Computer Vision, pages 506–513.

Li, M. and Zhou, Z. (2007). Improve computer-aided diagnosis with machine
learning techniques using undiagnosed samples. IEEE Trans. Systems, Man,
and Cybernetics, Part A, 37(6):1088–1098.

Li, Y. and Guo, M. (2011). Web page classification using relational learning
algorithm and unlabeled data. Journal of Computers, 6(3):474–479.

Li, Y. and Guo, M. (2012). A new relational tri-training system with adaptive
data editing for inductive logic programming. Knowl.-Based Syst., 35:173–185.

Liu, F. T., Ting, K. M., and Zhou, Z. (2008). Isolation forest. In Proceedings of
the 8th IEEE International Conference on Data Mining (ICDM), pages 413–422.

Loreti, D., Chesani, F., Mello, P., Roffia, L., Antoniazzi, F., Cinotti, T. S., Paolini,
G., Masotti, D., and Costanzo, A. (2019). Complex reactive event processing
for assisted living: The habitat project case study. Expert Syst. Appl., 126:200–
217.

Luckham, D. C. (2002). The Power of Events: An Introduction to Complex Event
Processing in Distributed Enterprise Systems. ddison-Wesley Longman Publishing
Co., Inc.

98 Bibliography

Mallapragada, P. K., Jin, R., Jain, A. K., and Liu, Y. (2009). Semiboost: Boost-
ing for semi-supervised learning. IEEE Trans. Pattern Anal. Mach. Intell.,
31(11):2000–2014.

Margara, A., Cugola, G., and Tamburrelli, G. (2014). Learning from the past:
automated rule generation for complex event processing. In Proceedings of the
8th ACM International Conference on Distributed Event-Based Systems (DEBS),
pages 47–58.

Mavroeidis, D. and Flach, P. A. (2003). Improved distances for structured
data. In Proceedings of the 13th International Workshop on Inductive Logic
Programming (ILP), pages 251–268.

McCallum, A. (2003). Efficiently inducing features of conditional random fields.
In Proceedings of the 19th conference on Uncertainty in Artificial Intelligence,
pages 403–410.

Michelioudakis, E., Artikis, A., and Paliouras, G. (2016a). Online structure learn-
ing for traffic management. In Proceedings of the 26th International Conference
on Inductive Logic Programming, pages 27–39.

Michelioudakis, E., Artikis, A., and Paliouras, G. (2019). Semi-supervised
online structure learning for composite event recognition. Machine Learning,
108(7):1085–1110.

Michelioudakis, E., Skarlatidis, A., Paliouras, G., and Artikis, A. (2016b). Online
structure learning using background knowledge axiomatization. In Proceed-
ings of European Conference on Machine Learning and Knowledge Discovery in
Databases, volume 1, pages 242–237.

Miyato, T., Maeda, S., Koyama, M., and Ishii, S. (2019). Virtual adversarial
training: A regularization method for supervised and semi-supervised learning.
IEEE Trans. Pattern Anal. Mach. Intell., 41(8):1979–1993.

Modrzejewski, M. (1993). Feature selection using rough sets theory. In Proceed-
ings of the European Conference on Machine Learning, pages 213–226.

Montali, M., Maggi, F. M., Chesani, F., Mello, P., and van der Aalst, W. M. P.
(2013). Monitoring business constraints with the event calculus. ACM TIST,
5(1):17:1–17:30.

Mousheimish, R., Taher, Y., and Zeitouni, K. (2017). Automatic learning of
predictive CEP rules: Bridging the gap between data mining and complex
event processing. In Proceedings of the 11th ACM International Conference on
Distributed and Event-based Systems (DEBS), pages 158–169.

Bibliography 99

Mueller, E. T. (2008a). Event Calculus. In Handbook of Knowledge Representation,
volume 3 of Foundations of Artificial Intelligence, pages 671–708. Elsevier.

Mueller, E. T. (2008b). Event Calculus. In Handbook of Knowledge Representation,
volume 3 of Foundations of Artificial Intelligence, pages 671–708. Elsevier.

Muggleton, S. (1995). Inverse entailment and progol. New Generation Comput.,
13(3&4):245–286.

Muggleton, S., Lodhi, H., Amini, A., and Sternberg, M. J. E. (2005). Support
vector inductive logic programming. In Proceedings of the 8th International
Conference on Discovery Science, pages 163–175.

Muggleton, S. and Raedt, L. D. (1994). Inductive logic programming: Theory
and methods. J. Log. Program., 19/20:629–679.

Nienhuys-Cheng, S.-H. (1997). Distance Between Herbrand Interpretations:
A Measure for Approximations to a Target Concept. In Proceedings of the
7th International Workshop on Inductive Logic Programming, pages 213–226.
Springer-Verlag.

Okada, S. and Nishida, T. (2010). Multi class semi-supervised classification
with graph construction based on adaptive metric learning. In Proceedings of
the 20th International Conference on Artificial Neural Networks (ICNN), pages
468–478.

Park, S., Park, J., Shin, S., and Moon, I. (2018). Adversarial dropout for
supervised and semi-supervised learning. In Proceedings of the 32nd AAAI
Conference on Artificial Intelligence, pages 3917–3924.

Paschke, A. and Kozlenkov, A. (2009). Rule-based event processing and reaction
rules. In Proceedings of the International Symposium on Rule Interchange and
Applications, pages 53–66.

Patroumpas, K., Alevizos, E., Artikis, A., Vodas, M., Pelekis, N., and Theodor-
idis, Y. (2017). Online event recognition from moving vessel trajectories.
GeoInformatica, 21(2):389–427.

Patroumpas, K., Artikis, A., Katzouris, N., Vodas, M., Theodoridis, Y., and Pelekis,
N. (2015). Event recognition for maritime surveillance. In Proceedings of the
18th International Conference on Extending Database Technology (EDBT), pages
629–640.

Pawlak, Z., Grzymala-Busse, J. W., Slowinski, R., and Ziarko, W. (1995). Rough
sets. Commun. ACM, 38(11):88–95.

100 Bibliography

Pietra, S. D., Pietra, V. D., and Lafferty, J. (1997). Inducing features of ran-
dom fields. IEEE Transactions on Pattern Analysis and Machine Intelligence,
19(4):380–393.

Pitsikalis, M., Artikis, A., Dreo, R., Ray, C., Camossi, E., and Jousselme, A.
(2019). Composite event recognition for maritime monitoring. In Proceedings
of the 13th ACM International Conference on Distributed and Event-based Systems
(DEBS), pages 163–174.

Plotkin, G. D. (1971). Automatic Methods of Inductive Inference. PhD thesis,
Edinburgh University.

Pourdamghani, N., Rabiee, H. R., and Zolfaghari, M. (2012). Metric learning
for graph based semi-supervised human pose estimation. In Proceedings of the
21st International Conference on Pattern Recognition (ICPR), pages 3386–3389.

Prapas, I., Paliouras, G., Artikis, A., and Baskiotis, N. (2018). Towards human
activity reasoning with computational logic and deep learning. In Proceedings of
the 10th Hellenic Conference on Artificial Intelligence (SETN), pages 27:1–27:4.

Quinlan, J. R. (1990). Learning logical definitions from relations. Machine
Learning, 5:239–266.

Raedt, L. D. (2008). Logical and Relational Learning: From ILP to MRDM (Cogni-
tive Technologies). Springer.

Ramon, J. and Bruynooghe, M. (1998). A framework for defining distances be-
tween first-order logic objects. In Proceedings of the 8th International Workshop
on Inductive Logic Programming, pages 271–280. Springer.

Rasmus, A., Berglund, M., Honkala, M., Valpola, H., and Raiko, T. (2015). Semi-
supervised learning with ladder networks. In Advances in Neural Information
Processing Systems 28, pages 3546–3554.

Ray, O. (2009). Nonmonotonic abductive inductive learning. J. Appl. Log.,
7(3):329–340.

Richardson, M. and Domingos, P. M. (2006). Markov logic networks. Mach.
Learn., 62(1-2):107–136.

Rodríguez, N. D., Cuéllar, M. P., Lilius, J., and Calvo-Flores, M. D. (2013). A
survey on ontologies for human behavior recognition. ACM Comput. Surv.,
46(4):43:1–43:33.

Roweis, S. T. and Saul, L. K. (2000). Nonlinear dimensionality reduction by
locally linear embedding. Science, 290(5500):2323–2326.

Bibliography 101

Schultz-Møller, N. P., Migliavacca, M., and Pietzuch, P. R. (2009). Distributed
complex event processing with query rewriting. In Proceedings of the Third
ACM International Conference on Distributed Event-Based Systems (DEBS).

Sebag, M. (1997). Distance induction in first order logic. In Proceedings of the
7th International Workshop on Inductive Logic Programming, pages 264–272.

Sebag, M. and Schoenauer, M. (1993). A rule-based similarity measure. In 1st
European Workshop on Topics in Case-Based Reasoning, pages 119–131.

Skarlatidis, A. (2014). Event Recognition Under Uncertainty and Incomplete Data.
PhD thesis, University of Piraeus.

Skarlatidis, A., Artikis, A., Filipou, J., and Paliouras, G. (2015a). A probabilistic
logic programming event calculus. Theory Pract. Log. Program., 15(2):213–
245.

Skarlatidis, A., Paliouras, G., Artikis, A., and Vouros, G. A. (2015b). Probabilistic
event calculus for event recognition. ACM Trans. Comput. Log., 16(2):11:1–
11:37.

Skarlatidis, A., Paliouras, G., Artikis, A., and Vouros, G. A. (2015c). Probabilistic
Event Calculus for Event Recognition. ACM Transactions on Computational
Logic, 16(2):11:1–11:37.

Song, K., Nie, F., Han, J., and Li, X. (2017). Parameter free large margin nearest
neighbor for distance metric learning. In Singh, S. P. and Markovitch, S.,
editors, Proceedings of the 31st AAAI Conference on Artificial Intelligence, pages
2555–2561. AAAI Press.

Soonthornphisaj, N. and Kijsirikul, B. (2004). Combining ILP with semi-
supervised learning for web page categorization. In Proceedings of the In-
ternational Conference on Computational Intelligence, pages 322–325.

Srinivasan, A. (2003). The aleph manual. Technical Report 4, Computing
Laboratory, Oxford University.

Srinivasan, A. and Bain, M. (2017). An empirical study of on-line models for
relational data streams. Machine Learning, 106(2):243–276.

Storf, H., Kleinberger, T., Becker, M., Schmitt, M., Bomarius, F., and Prueckner, S.
(2009). An event-driven approach to activity recognition in ambient assisted
living. In Proceedings of the European Conference on Ambient Intelligence, pages
123–132.

102 Bibliography

Subramanya, A. and Talukdar, P. P. (2014). Graph-Based Semi-Supervised
Learning. Synthesis Lectures on Artificial Intelligence and Machine Learning.
Morgan & Claypool Publishers.

Szummer, M. and Jaakkola, T. S. (2001). Partially labeled classification with
markov random walks. In Advances in Neural Information Processing Systems
14, pages 945–952. MIT Press.

Tanha, J., van Someren, M., and Afsarmanesh, H. (2017). Semi-supervised
self-training for decision tree classifiers. Int. J. Machine Learning & Cybernetics,
8(1):355–370.

Tarvainen, A. and Valpola, H. (2017). Mean teachers are better role models:
Weight-averaged consistency targets improve semi-supervised deep learning
results. In Advances in Neural Information Processing Systems 30: Annual
Conference on Neural Information Processing Systems 2017, pages 1195–1204.

Tenenbaum, J. B., Silva, V. d., and Langford, J. C. (2000). A global geometric
framework for nonlinear dimensionality reduction. Science, 290(5500):2319–
2323.

Ting, K. M., Zhou, G., Liu, F. T., and Tan, S. C. (2013). Mass estimation. Machine
Learning, 90(1):127–160.

Ting, K. M., Zhu, Y., Carman, M. J., Zhu, Y., Washio, T., and Zhou, Z. (2019).
Lowest probability mass neighbour algorithms: relaxing the metric constraint
in distance-based neighbourhood algorithms. Machine Learning, 108(2):331–
376.

Triguero, I., García, S., and Herrera, F. (2015). Self-labeled techniques for
semi-supervised learning: taxonomy, software and empirical study. Knowl. Inf.
Syst., 42(2):245–284.

Tsilionis, E., Koutroumanis, N., Nikitopoulos, P., Doulkeridis, C., and Artikis, A.
(2019). Online event recognition from moving vehicles: Application paper.
Theory Pract. Log. Program., 19(5-6):841–856.

Turaga, P. K., Chellappa, R., Subrahmanian, V. S., and Udrea, O. (2008). Machine
recognition of human activities: A survey. IEEE Trans. Circuits Syst. Video
Techn., 18(11):1473–1488.

Valko, M., Kveton, B., Huang, L., and Ting, D. (2010). Online semi-supervised
learning on quantized graphs. In Proceedings of the 26th Conference on Uncer-
tainty in Artificial Intelligence, pages 606–614.

Bibliography 103

van Engelen, J. E. and Hoos, H. H. (2020). A survey on semi-supervised learning.
Mach. Learn., 109(2):373–440.

Vapnik, V. (1998). Statistical learning theory. Wiley.

Vergara, J. R. and Estévez, P. A. (2014). A review of feature selection methods
based on mutual information. Neural Computing and Applications, 24(1):175–
186.

Wagner, T., Guha, S., Kasiviswanathan, S. P., and Mishra, N. (2018). Semi-
supervised learning on data streams via temporal label propagation. In Pro-
ceedings of the 35th International Conference on Machine Learning (ICML), pages
5082–5091.

Wang, F. and Sun, J. (2015). Survey on distance metric learning and dimension-
ality reduction in data mining. Data Min. Knowl. Discov., 29(2):534–564.

Wang, F. and Zhang, C. (2008). Label propagation through linear neighborhoods.
IEEE Trans. Knowl. Data Eng., 20(1):55–67.

Wang, J., Jebara, T., and Chang, S. (2008). Graph transduction via alternating
minimization. In Proceedings of the 25th International Conference on Machine
Learning (ICML), pages 1144–1151.

Wang, J., Jebara, T., and Chang, S. (2013a). Semi-supervised learning using
greedy max-cut. J. Mach. Learn. Res., 14(1):771–800.

Wang, W. and Zhou, Z. (2007). Analyzing co-training style algorithms. In
Proceedings of the 18th European Conference on Machine Learning, pages 454–
465.

Wang, Y., Cao, K., and Zhang, X. (2013b). Complex event processing over
distributed probabilistic event streams. Comput. Math. Appl., 66(10):1808–
1821.

Weinberger, K. Q. and Saul, L. K. (2009). Distance metric learning for large
margin nearest neighbor classification. J. Mach. Learn. Res., 10:207–244.

Wu, B., Russo, A., Law, M., and Inoue, K. (2018). Learning commonsense
knowledge through interactive dialogue. In Technical Communications of the
34th International Conference on Logic Programming, pages 12:1–12:19.

Wu, X., Li, Z., So, A. M., Wright, J., and Chang, S. (2012). Learning with
partially absorbing random walks. In Proceedings of the 26th Annual Conference
on Neural Information Processing Systems, pages 3086–3094.

104 Bibliography

Xu, C., Tao, D., and Xu, C. (2013). A survey on multi-view learning. CoRR,
abs/1304.5634.

Yarowsky, D. (1995). Unsupervised word sense disambiguation rivaling super-
vised methods. In Proceedings of the 33rd Annual Meeting of the Association for
Computational Linguistics, pages 189–196.

Zhang, D., Chen, S., and Zhou, Z. (2008). Constraint score: A new filter
method for feature selection with pairwise constraints. Pattern Recognition,
41(5):1440–1451.

Zhang, F. (2005). The Schur Complement and Its Applications. Springer.

Zhou, D., Bousquet, O., Lal, T. N., Weston, J., and Schölkopf, B. (2003). Learning
with local and global consistency. In Advances in Neural Information Processing
Systems 16, pages 321–328.

Zhou, Y. and Goldman, S. A. (2004). Democratic co-learning. In Proceedings of
the 16th IEEE International Conference on Tools with Artificial Intelligence, pages
594–602.

Zhou, Z. and Li, M. (2005). Tri-training: Exploiting unlabeled data using three
classifiers. IEEE Transactions on Knowledge and Data Engineering, 17(11):1529–
1541.

Zhu, X., Ghahramani, Z., and Lafferty, J. D. (2003). Semi-supervised learning
using gaussian fields and harmonic functions. In Proceedings of the 20th
International Conference on Machine Learning, pages 912–919. AAAI Press.

Zhu, X., Goldberg, A. B., Brachman, R., and Dietterich, T. (2009). Introduction
to Semi-Supervised Learning. Morgan and Claypool Publishers.

Zucker, J. and Ganascia, J. (1996). Representation changes for efficient learning
in structural domains. In Saitta, L., editor, Proceedings of the 13th International
Conference on Machine Learning, pages 543–551. Morgan Kaufmann.

Symbols

G The graph.

V The set of vertices.

E The set of edges.

Q The set of query atoms.

E The set of evidence atoms.

F The set of random binary (Half-Space) trees.

B The Herbrand base.

M The set of mode declarations.

A The set of logical atoms constructed from a Herbrand
base B and a set of mode declarationsM.

|S| The cardinality of set S.

C The cost matrix.

W The distance matrix.

wij The edge weight (distance) connecting vertices i and j.

D The degree matrix.

L The Laplacian matrix.

M The Mahalanobis distance covariance matrix.

N k
i The set of target k-nearest neighbors of an example i.

b The binary feature vector.

vbi The vertex i having only the logical atoms indicated by
the feature vector b.

Hp The hierarchical partitioning p.

H(D) The set of all partitionings over a dataset D.

R(x, y|Hp) The smallest region covering x and y in the partitioning
Hp.

106 Symbols

C The cache containing mappings of vertices to their
counts.

ds The structural distance (SPLICE).

dbs Optimised (LMFS) structural distance.

m̃ Mass-based dissimilarity.

dbh Optimised (LMFS) hybrid distance (SPLICE).

dh Non-optimised hybrid distance.

¬ Negation.

∧ Conjunction.

⇐ Implication.

“Everything not saved will be lost”
— Nintendo “Quit Screen” message

	Abstract
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Symbolic Complex Event Recognition
	1.2 Motivation
	1.3 Thesis Contribution
	1.3.1 Semi-Supervised Online Learning for Complex Event Recognition
	1.3.2 Semi-Supervised Online Learning Combining Structure andMass-based Predicate Similarity
	1.3.3 Publications

	1.4 Thesis Outline

	2 Background
	2.1 Event Calculus and Structure Learning
	2.2 Graph-based Semi-Supervised Learning
	2.2.1 Harmonic Function Method
	2.2.2 Temporal Label Propagation

	2.3 Distance between Herbrand Interpretations
	2.4 Large Margin Nearest Neighbour Metric Learning
	2.5 Mass-based Dissimilarity
	2.6 Related Work
	2.6.1 Learning Complex Event Rules in the Event Calculus
	2.6.2 Semi-Supervised Learning
	2.6.3 Distances for Relational Data
	2.6.4 Feature Selection

	2.7 Summary

	3 Splice: Semi-Supervised Learning for Complex Event Recognition
	3.1 Data Partitioning
	3.2 Label Caching
	3.3 Graph Construction
	3.4 Supervision Completion

	4 Splice: Semi-Supervised LearningCombining Structure and Mass-based Predicate Similarity
	4.1 Large-Margin Feature Selection for Logical Predicates
	4.2 Mass Dissimilarity for Logical Predicates
	4.3 Robust Graph Construction and Labelling

	5 Experimental Study
	5.1 Description of Datasets
	5.2 Experimental Setup
	5.3 Evaluation on Activity Recognition
	5.4 Evaluation on Maritime Monitoring
	5.5 Evaluation on Fleet Management
	5.6 Discussion
	5.6.1 Ablation Study
	5.6.2 Batch Size Impact

	5.7 Summary

	6 Conclusions and Future Work
	6.1 Conclusions
	6.2 Future Work

	Bibliography
	Symbols

