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ABSTRACT
The Complex Event Recognition (CER) group is a re-
search team, affiliated with the National Centre of Sci-
entific Research “Demokritos” in Greece. The CER
group works towards advanced and efficient methods
for the recognition of complex events in a multitude of
large, heterogeneous and interdependent data streams.
Its research covers multiple aspects of complex event
recognition, from efficient detection of patterns on event
streams to handling uncertainty and noise in streams,
and machine learning techniques for inferring interest-
ing patterns. Lately, it has expanded to methods for fore-
casting the occurrence of events. It was founded in 2009
and currently hosts eight senior and junior researchers,
working regularly with under-graduate students.

1. INTRODUCTION
The proliferation of devices that work in real-

time, constantly producing data streams, has led to
a paradigm shift with respect to what is expected
from a system working with massive amounts of
data. The dominant model for processing large-
scale data was one that assumed a relatively fixed
database/knowledge base, i.e., it assumed that the
operations of updating existing records/facts and
inserting new ones were infrequent. The user of such
a system would then pose queries to the database,
without very strict requirements in terms of latency.

While this model is far from being rendered ob-
solete (on the contrary), a system aiming to ex-
tract actionable knowledge from continuously evolv-
ing streams of data has to address a new set of chal-
lenges and satisfy a new set of requirements. The
basic idea behind such a system is that it is not
always possible, or even desirable, to store every
bit of the incoming data, so that it can be later
processed. Rather, the goal is to make sense out of
these streams of data, without having to store them.
This is done by defining a set of queries/patterns,
continuously applied to the data streams. Each
such pattern includes a set of temporal constraints

and, possibly, a set of spatial constraints, expressing
a composite or complex event of special significance
for a given application. The system must then be
e�cient enough so that instances of pattern satisfac-
tion can be reported to a user with minimal latency.
Such systems are called Complex Event Recognition
(CER) systems [6, 7, 2].

CER systems are widely adopted in contempo-
rary applications. Such applications are the recog-
nition of attacks in computer network nodes, hu-
man activities on video content, emerging stories
and trends on the Social Web, tra�c and transport
incidents in smart cities, fraud in electronic market-
places, cardiac arrhythmias and epidemic spread.
Moreover, Big Data frameworks, such as Apache
Storm, Spark Streaming and Flink, have been ex-
tending their stream processing functionality by in-
cluding implementations for CER.

There are multiple issues that arise for a CER sys-
tem. As already mentioned, one issue is the require-
ment for minimal latency. Therefore, a CER sys-
tem has to employ highly e�cient reasoning mecha-
nisms, scalable to high-velocity streams. Moreover,
pre-processing steps, like data cleaning, have to be
equally e�cient, otherwise they constitute a luxury
that a CER system cannot a↵ord. In this case, the
system must be able to handle noise. This may be a
requirement, even if perfectly clean input data is as-
sumed, since domain knowledge is often insu�cient
or incomplete. Hence, the patterns defined by the
users may themselves carry a certain degree of un-
certainty. Moreover, it is quite often the case that
such patterns cannot be provided at all, even by
domain experts. This poses a further challenge of
how to apply machine learning techniques in order
to extract patterns from streams before a CER sys-
tem can actually run with them. Standard machine
learning techniques are not always directly applica-
ble, due to the size and variability of the training
set. As a result, machine learning techniques must
work in an online fashion. Finally, one often needs
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to move beyond detecting instances of pattern sat-
isfaction into forecasting when a pattern is likely to
be satisfied in the future.

Our CER group1 at the National Centre for Sci-
entific Research (NCSR) “Demokritos”, in Athens,
Greece, has been conducting research on complex
event recognition for the past decade, and has devel-
oped a number of novel algorithms and open-source
software tools. NCSR “Demokritos” is the largest
multi-disciplinary research center in Greece, with
expertise and infrastructure in the fields of Infor-
matics and Telecommunications, Nanotechnology,
Energy & Environment, Biosciences, and Particle
and Nuclear Science. The Institute of Informat-
ics and Telecommunications, in particular, focuses
on research and development in the areas of Intel-
ligent Systems, Telecommunications, Networks and
Web Technologies. The CER group is one of the
six groups the Software & Knowledge Engineering
Lab of the Institute of Informatics & Telecommuni-
cations. In what follows, we sketch the approaches
that we have proposed as part of the CER group
and present some indicative results.

2. COMPLEX EVENT RECOGNITION
Numerous CER systems have been proposed in

the literature [6, 7]. Recognition systems with a
logic-based representation of complex event (CE)
patterns, in particular, have been attracting atten-
tion since they exhibit a formal, declarative seman-
tics [2]. We have been developing an e�cient di-
alect of the Event Calculus, called ‘Event Calculus
for Run-Time reasoning’ (RTEC) [4]. The Event
Calculus is a logic programming formalism for rep-
resenting and reasoning about events and their ef-
fects [14]. CE patterns in RTEC identify the con-
ditions in which a CE is initiated and terminated.
Then, according to the law of inertia, a CE holds at
a time-point T if it has been initiated at some time-
point earlier than T , and has not been terminated
in the meantime.

RTEC has been optimised for CER, in order to
be scalable to high-velocity data streams. A form of
caching stores the results of subcomputations in the
computer memory to avoid unnecessary recomputa-
tions. A set of interval manipulation constructs sim-
plify CE patterns and improve reasoning e�ciency.
A simple indexing mechanism makes RTEC robust
to events that are irrelevant to the patterns we want
to match and so RTEC can operate without data fil-
tering modules. Finally, a ‘windowing’ mechanism
supports real-time CER. One main motivation for
RTEC is that it should remain e�cient and scalable
1
http://cer.iit.demokritos.gr/

in applications where events arrive with a (variable)
delay from, or are revised by, the underlying sen-
sors: RTEC can update the intervals of the already
recognised CEs, and recognise new CEs, when data
arrive with a delay or following revision.

RTEC has been analysed theoretically, through a
complexity analysis, and assessed experimentally in
several application domains, including city trans-
port and tra�c management [5], activity recogni-
tion on video feeds [4], and maritime monitoring
[18]. In all of these applications, RTEC has proven
capable of performing real-time CER, scaling to large
data streams and highly complex event patterns.

3. UNCERTAINTY HANDLING
CER applications exhibit various types of uncer-

tainty, ranging from incomplete and erroneous data
streams to imperfect CE patterns [2]. We have been
developing techniques for handling uncertainty in
CER by extending the Event Calculus with proba-
bilistic reasoning. Prob-EC [20] is a logic program-
ming implementation of the Event Calculus using
the ProbLog engine [13], that incorporates proba-
bilistic semantics into logic programming. Prob-EC
is the first Event Calculus dialect able to deal with
uncertainty in the input data streams. For exam-
ple, Prob-EC is more resilient to spurious data than
the standard (crisp) Event Calculus.

MLN-EC [21] is an Event Calculus implementa-
tion based on Markov Logic Networks (MLN)s [19],
a framework that combines first-order logic with
graphical models, in order to enable probabilistic
inference and learning. CE patterns may be associ-
ated with weight values, indicating our confidence
in them. Inference can then be performed regard-
ing the time intervals during which CEs of inter-
est hold. Like Prob-EC, MLN-EC increases the
probability of a CE every time its initiating con-
ditions are satisfied, and decreases this probability
whenever its terminating conditions are satisfied,
as shown in Figure 1. Moreover, in MLN-EC the
domain-independent Event Calculus rules, express-
ing the law of inertia, may be associated with weight
values, introducing probabilistic inertia. This way,
the model is highly customisable, by tuning appro-
priately the weight values with the use of machine
learning techniques, and thus achieves high predic-
tive accuracy in a wide range applications.

The use of background knowledge about the task
and the domain, in terms of logic (the Event Cal-
culus), can make MLN-EC more robust to varia-
tions in the data. Such variations are very com-
mon in practice, particularly in dynamic environ-
ments, such as the ones encountered in CER. The
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Figure 1: CE probability estimation in the Event
Calculus. The solid line concerns a probabilistic
Event Calculus, such as MLN-EC, while the dashed
line corresponds to a crisp (non-probabilistic) ver-
sion of the Event Calculus. Due to the law of in-
ertia, the CE probability remains constant in the
absence of input data. Each time the initiation con-
ditions are satisfied (e.g., in time-points 3 and 10),
the CE probability increases. Conversely, when the
termination conditions are satisfied (e.g., in time-
point 20), the CE probability decreases.
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Figure 2: CER under uncertainty. F1-score of
MLN-EC and linear-chain CRFs for di↵erent CE
acceptance thresholds.

common assumption made in machine learning that
the training and test data share the same statisti-
cal properties is often violated in these situations.
Figure 2, for example, compares the performance of
MLN-EC against linear-chain Conditional Random
Fields on a benchmark activity recognition dataset,
where evidence is incomplete in the test set as com-
pared to the training set.

4. EVENT PATTERN LEARNING
The manual authoring of CE patterns is a te-

dious and error-prone process. Consequently, the
automated construction of such patterns from data
is highly desirable. We have been developing super-
vised, online learning learning tools for construct-
ing logical representations of CE patterns, from a

single-pass over a relational data stream. OSL↵ [16]
is such a learner for Markov Logic Networks (MLNs),
formulating CE patterns in the form of MLN-EC
theories. OSL↵ extends OSL [9] by exploiting a
background knowledge in order to significantly con-
strain the search for patterns.

In each step t of the online procedure, a set of
training examples Dt arrives containing input data
along with CE annotation. Dt is used together
with the already learnt hypothesis, if any, to pre-
dict the truth values of the CEs of interest. This
is achieved by MAP (maximum a posteriori) infer-
ence. Given Dt, OSL↵ constructs a hypergraph that
represents the space of possible structures as graph
paths. Then, for all incorrectly predicted CEs, the
hypergraph is searched using relational pathfind-
ing, for clauses supporting the recognition of these
CEs. The paths discovered during the search are
generalised into first-order clauses. Subsequently,
the weights of the clauses that pass the evaluation
stage are optimised using o↵-the-shelf online weight
learners. Then, the weighted clauses are appended
to the hypothesis and the procedure is repeated for
the next set of training examples Dt+1.

OLED [11] is an Inductive Logic Programming
system that learns CE patterns, in the form of Event
Calculus theories, in a supervised fashion and in a
single pass over a data stream. OLED constructs
patterns by first encoding a positive example from
the input stream into a so-called bottom rule, i.e.,
a most-specific rule ↵  �1 ^ . . . ^ �n, where ↵ is
an initiation or termination atom, and �1, . . . , �n

are relational features expressing anything “inter-
esting” as defined by the language bias. To learn
a useful rule, OLED then searches within the space
of rules that ✓-subsume the bottom rule, i.e., rules
that involve some of the �i’s only. To that end,
OLED starts from the most-general rule and gradu-
ally specialises it by adding �i’s to its body, using a
rule evaluation function to assess the quality of each
generated specialisation. OLED’s single-pass strat-
egy is based on the Hoe↵ding bound [8], a statistical
tool that allows to approximate the quality of a rule
on the entire input using only a subset of the data.

We have evaluated OLED and OSL↵ on real
datasets concerning activity recognition, maritime
monitoring, credit card fraud detection, and traf-
fic management in smart cities [11, 16, 3, 15, 12].
We have also compared OLED and OSL↵ to OSL
[9], ‘batch’ structure learners requiring many passes
over the data, and to hand-curated Event Calculus
patterns (with optimised weight values). The re-
sults suggest that both OLED and OSL↵ can match
the predictive accuracy of batch learners as well
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as that of hand-crafted patterns. Moreover, OLED

and OSL↵ have proven significantly faster than both
batch and online learners, making them more ap-
propriate for large data streams.

5. EVENT FORECASTING
Forecasting over time-evolving data streams is a

task that can be defined in multiple ways. There
is a conceptual di↵erence between forecasting and
prediction, as the latter term is understood in ma-
chine learning, where the main goal is to “predict”
the output of a function on previously unseen in-
put data, even if there is no temporal dimension.
In forecasting, time is a crucial component and the
goal is to predict the temporally future output of
some function or the occurrence of an event. Time-
series forecasting is an example of the former case
and is a field with a significant history of contri-
butions. However, its methods cannot be directly
transferred to CER, since it handles streams of
(mostly) real-valued variables and focuses on fore-
casting relatively simple patterns. On the contrary,
in CER we are also interested in categorical val-
ues, related through complex patterns and involv-
ing multiple variables. Our group has developed
a method, where automata and Markov chains are
employed in order to provide (future) time intervals
during which a match is expected with a probability
above a confidence threshold [1].

We start with a given pattern of interest, defin-
ing relations between events, in the form of a regular
expression—i.e., using operators for sequence, dis-
junction and iteration. Our goal, besides detecting
occurrences of this pattern, is also to estimate, at
each new event arrival, the number of future events
that we will need to wait for until the expression is
satisfied, and thus a match be detected. A pattern
in the form of a regular expression is first converted
to a deterministic finite automaton (DFA) through
standard conversion algorithms. We then construct
a Markov chain that will be able to provide a proba-
bilistic description of the DFA’s run-time behavior,
by employing Pattern Markov Chains (PMC) [17].
The resulting PMC depends both on the initial pat-
tern and on the assumptions made about the sta-
tistical properties of the input stream—the order m
of the assumed Markov process.

After constructing a PMC, we can use it to calcu-
late the so-called waiting-time distributions, which
can give us the probability of reaching a final state
of the DFA in k transitions from now. To estimate
the final forecasts, another step is required, since
our aim is not to provide a single future point with
the highest probability, but an interval in the form
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(a) Deterministic Finite Automaton, state 1.
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Figure 3: Event Forecasting. The event pattern
requires that one event of type a is followed by three
events of type b. ✓fc = 0.5. For illustration, the x

axis stops at 12 future events.

of I=(start , end). The meaning of such an inter-
val is that the DFA is expected to reach a final
state sometime in the future between start and end
with probability at least some constant threshold
✓fc (provided by the user). An example is shown
in Figure 3, where the DFA in Figure 3a is in state
1, the waiting-time distributions for all of its non-
final states are shown in Figure 3b, and the distri-
bution, along with the forecast interval, for state 1
are shown in green.

Figure 4 shows results of our implementation on
two real-world datasets from the financial and the
maritime domains. In the former case, the goal
was to forecast a specific case of credit card fraud,
whereas in the latter it was to forecast a specific
vessel manoeuver. Figures 4a and 4d show precision
results (the percentage of forecasts that were accu-
rate), where the y axes correspond to di↵erent val-
ues of the threshold ✓fc , and the x axes correspond
to states of the PMC (more “advanced” states are
to the right of the axis), i.e., we measure precision
for the forecasts produced by each individual state.
Similarly, Figures 4b and 4e are per-state plots for
spread (the length of the forecast interval), and Fig-
ures 4c and 4f are per-state plots for distance (the
temporal distance between the time a forecast is
produced and the start of the forecast interval).

As expected, more “advanced” states produce fore-
casts with higher precision, smaller spread and dis-
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Figure 4: Event forecasting for credit card fraud management (top) and maritime monitoring (bottom). The
y axes correspond to di↵erent values of the threshold ✓fc . The x axes correspond to states of the PMC.

tance. However, there are cases where we can get
earlier both high precision and low spread scores
(see Figures 4d and 4e). This may happen when
there exist strong probabilistic dependencies in the
stream, e.g., when one event type is very likely (or
very unlikely) to appear, given that the last event(s)
is of a di↵erent event type. Our system can take
advantage of such cases in order to produce high-
quality forecasts early.

6. PARTICIPATION IN RESEARCH & IN-
NOVATION PROJECTS

The CER group has been participating in several
research and innovation projects.

SPEEDD2 (Scalable Proactive Event-Driven De-
cision Making) was an FP7 EU-funded project, co-
ordinated by the CER group, that developed tools
for proactive analytics in Big Data applications. In
SPEEDD, the CER group worked on credit card
fraud detection and tra�c management [3, 15], de-
veloping formal tools for highly scalable CER [4],
and pattern learning [10, 16].

REVEAL3 (REVEALing hidden concepts in so-
cial media) was an FP7 EU project that developed
techniques for real-time knowledge extraction from
social media. In REVEAL, the CER group devel-
oped a technique for online (single-pass) learning of
2
http://speedd-project.eu/

3
http://revealproject.eu/

event patterns under uncertainty [11].
AMINESS4 (Analysis of Marine Information for

Environmentally Safe Shipping) was a national
project that developed a framework for maritime
environmental safety and cost reduction.

Similarly, datACRON5 (Big Data Analytics for
Time Critical Mobility Forecasting) is an H2020 EU
project that introduces novel methods for detecting
threats and abnormal activity in very large fleets
of moving entities, such as vessels and aircrafts. In
datACRON, the CER group has been developing
algorithms for highly e�cient spatio-temporal pat-
tern matching [18], complex event forecasting [1]
and parallel, online event pattern learning [12], as
well as user-friendly languages for manual pattern
construction [22].

Track & Know (Big Data for Mobility & Track-
ing Knowledge Extraction in Urban Areas) is an
H2020 EU-funded project that develops a new soft-
ware framework increasing the e�ciency of Big Data
applications in the transport, mobility, motor insur-
ance and health sectors. The CER team is responsi-
ble for the complex event recognition and forecast-
ing technology of Track & Know.

7. COMMUNITY CONTRIBUTIONS
The CER group supports the research commu-

4
http://aminess.eu/

5
http://www.datacron-project.eu/
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nity at di↵erent levels; notably, by making avail-
able the proposed research methods as open-source
solutions. The RTEC CER engine (see Section 2)
is available as a monolithic Prolog implementation6

and as a parallel Scala implementation7. The OLED

system for online learning of event patterns (see Sec-
tion 4) is also available as an open-source solution8,
both for single-core and parallel learning. OLED is
implemented in Scala; both OLED and RTEC use
the Akka actors library for parallel processing.

The OSL↵ online learner (see Section 4), along
with MAP inference based on integer linear pro-
gramming, and various weight optimisation algo-
rithms (Max-Margin, CDA and AdaGrad), are con-
tributed to LoMRF9, an open-source implementa-
tion of Markov Logic Networks. LoMRF provides
predicate completion, clausal form transformation
and a parallel grounding algorithm which e�ciently
constructs the minimal Markov Random Field.
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