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Abstract
Symbolic event recognition systems detect event occurrences using first-order logic rules. 
Although existing online structure learning approaches ease the discovery of such rules 
in noisy data streams, they assume the existence of fully labelled training data. Splice is a 
recent online graph-based approach that estimates the labels of unlabelled data and makes 
it possible to learn such rules from semi-supervised training sequences of logical inter-
pretations. However, Splice labelling depends significantly on the metric used to compute 
the distances of unlabelled examples to their labelled counterparts. Moreover, there is no 
guarantee about the quality of the labelling found in the local graphs that are built as the 
data stream in. In this paper, we propose a new online learning method, which includes an 
enhanced hybrid measure that combines an optimised structural distance, and a data-driven 
one. The former is guided by feature selection targeted to kNN classification, while the 
latter is a mass-based dissimilarity. Additionally, the enhanced Splice method, improves 
the graph construction process, by storing a synopsis of the past, in order to achieve more 
informed labelling on the local graphs. We evaluate our approach by learning Event Cal-
culus theories for the tasks of human activity recognition, maritime monitoring, and fleet 
management. The evaluation suggests that our approach outperforms its predecessor, in 
terms of inferring the missing labels and improving the predictive accuracy of the underly-
ing structure learning system.

Keywords  First-order logic · Metric learning · Mass dissimilarity · Event calculus · Event 
recognition

1  Introduction

Symbolic composite event recognition (CER) systems (Cugola & Margara, 2012) con-
sume input sequences of simple, derived events (SDEs), matching them against a knowl-
edge base of first-order rules (Artikis et al., 2012), and recognising composite events (CEs) 
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of interest. CEs are usually defined as multi-relational structures over actors and objects 
involved in an event, and thus, manual derivation of such rules can be cumbersome and 
error-prone. In addition, CER applications typically operate in data streams of significant 
volume and velocity (Giatrakos et al., 2020), which further renders the composition of such 
relational dependencies unrealistic. To that end, methods for learning CE rules in a sin-
gle pass over a data stream are essential (Srinivasan & Bain, 2017; Dries & Raedt, 2009; 
Gama, 2010).

Online logic-based learners have been proposed for the discovery of CE structures under 
uncertainty (Katzouris et al., 2016, 2018; Michelioudakis et al., 2016). They assume that a 
fully-labelled training sequence arrives for processing, which is an unrealistic assumption 
in real-life applications.

Splice (Michelioudakis et  al., 2019) is a recent method that makes semi-supervised 
learning of logic-based CE rules possible by inferring the missing labels using a graph-
based label propagation technique (Zhu et al., 2003). Splice represents training instances 
as sets of logical atoms and employs a structural distance, adapted from Nienhuys-Cheng 
(1997), to compute the distance of unlabelled data to their labelled counterparts. The label-
ling is achieved online (single-pass), by storing previously seen labels for future usage, 
since it is assumed that the labelled data are infrequent. Although Splice facilitates the 
learning of CE rules in the presence of missing labels, its distance measure may be com-
promised by irrelevant features or imbalanced supervision. Moreover, its approach to 
online label propagation does not provide any guarantee about the labelling inferred from 
the local graphs, which are built as the data stream in. In other words, Splice ignores previ-
ously seen unlabelled examples and their respective distances to the rest of the graph.

In this paper, we propose an improved hybrid distance measure that combines the struc-
tural measure of Splice with a mass-based dissimilarity (Ting et  al., 2019), employing 
mass estimation theory (Ting et  al., 2013) to quantify the distance between examples of 
logical atoms. We further enhance the structural distance by optimising feature selection 
for k-nearest neighbour (kNN) classification. To that end, we adapt the Large-Margin Near-
est Neighbour (Weinberger & Saul, 2009), a well-known approach to metric learning, for 
the selection of logical predicates. Finally, in order to provide guarantees about the online 
labelling, we utilize a technique proposed by (Wagner et al., 2018) that retains a synopsis of 
the graph in order to achieve more informed labelling across the incoming micro-batches.

The completed training data can be subsequently used by any online supervised struc-
ture learner. To demonstrate Splice + , our proposed approach for semi-supervised learn-
ing of event rules, we use the OLED online learner (Katzouris et al., 2016), which con-
structs Event Calculus (EC) theories (Kowalski & Sergot, 1986; Mueller, 2008) for CER 
applications.

The proposed method (Splice + ) is compared to its predecessor (Splice) and another 
baseline method adapted from Soonthornphisaj and Kijsirikul (2004) to learn EC theo-
ries on the tasks of activity recognition from surveillance video footage, maritime moni-
toring, and fleet management. In the first task, the goal is to recognise activities taking 
place between persons, e.g., people meeting or moving together, by exploiting information 
about observed activities of individuals. In maritime monitoring, the goal is to recognise 
vessel activities, by exploiting information such as vessel speed, location and communi-
cation gaps. Finally, in fleet management, the objective is to recognise vehicle activities, 
by combining positional and operational information such as vehicle speed, location and 
fuel level. Our empirical analysis suggests that our improved method outperforms both its 
predecessor and the baseline. In particular, it infers more accurately the missing labels and 
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improves the predictive accuracy of the underlying structure learner, at the price of a toler-
able increase in processing time.

In summary, the main contributions of this paper are: 

1.	 An adapted metric learning technique for feature subset selection over logical atoms. 
The adapted technique is used as an informed structural distance which accounts for 
irrelevant and noisy predicates (features) that may compromise accuracy.

2.	 A hybrid distance measure which combines the above-mentioned informed structural 
distance to a mass-based dissimilarity. The hybrid measure exploits both the labelled 
and unlabelled data to quantify the distance between examples of logical atoms. The 
resulted measure can be considered as a semi-supervised metric learning method.

3.	 An online semi-supervised logic-based learner that retains a graph synopsis of tem-
porally adjacent examples, in order to operate on large training sequences, and learns 
interpretable CE rules in the Event Calculus.

4.	 The evaluation of Splice + against Splice on three real (non-synthetic) datasets. A human 
activity recognition dataset labelled by human experts; a maritime monitoring data-
set comprising vessel position signals; and a fleet management dataset consisting of 
positional and operational data from commercial vehicles. Moreover, to aid research 
reproducibility, we have made the datasets and the code publicly available.

The remainder of the paper is organised as follows. Section 2 provides the necessary back-
ground used in Sect. 3 to describe the proposed hybrid predicate similarity and our online 
semi-supervised learning system for learning composite event rules. Section  4 reports 
experimental results on the tasks of human activity recognition, maritime monitoring and 
vehicle fleet management. Section 5 discusses related work for semi-supervised learning 
on data streams, feature selection and metric learning techniques, while Sect. 6 concludes 
and proposes directions for future research.

2 � Background

2.1 � Online semi‑supervised learning for composite event recognition

Splice (Michelioudakis et al., 2019) enables online structure learning for composite event 
recognition in the presence of incomplete supervision. Towards this end, it employs a 
graph-based technique proposed by Zhu et al. (2003), to derive labels for the unlabelled 
data, based on their distance to their labelled counterparts. Since the CEs are usually 
defined over multi-relational data (Cugola & Margara, 2012), instead of numerical data 
points, Splice employs a distance function for sets of logical atoms, which represent the 
training examples. The labelling process is achieved in a single-pass over the training data 
by storing a compressed version of previously seen labelled examples.

Splice assumes that a training sequence arrives for processing in micro-batches. Each 
micro-batch contains a sequence of ground evidence atoms, i.e., first-order logic ground 
atoms, expressed in the Event Calculus (Kowalski & Sergot, 1986). Each micro-batch 
can be fully labelled, partially labelled or may contain no labels at all. Each micro-batch 
is grouped into examples of ground atoms, as depicted in Fig.  1. The ��������� and 
������� atoms denote simple derived event (SDE) and CE occurrences respectively, while 
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the remaining atoms express contextual information. The micro-batch size is user-defined 
and it is measured in time-points. In general the size can be arbitrarily large, however, 
in practice, small micro-batches improve runtime performance. Splice assumes that CEs 
appear chronologically immediately following the pattern of SDEs causing them. Grouped 
examples contain exactly one ground query atom and a subset of the evidence atoms in the 
micro-batch. The selected evidence atoms are linked to the query atom through their shared 
constants, i.e., they should be relevant to the CE of interest. The top example in Fig. 1 is 
labelled, stating that two persons are moving together, while the bottom one is unlabelled. 
Unlabelled atoms are prefixed by the symbol ‘?’.

In order to address the online processing requirement, under the assumption that labels 
are infrequent, Splice caches previously seen labelled examples for future usage. The cach-
ing mechanism only stores unique examples, along with their frequency (the number of 
times they have appeared in the stream), in order to reduce the memory requirements. To 
that end, Splice employs logical unification in order to check for uniqueness. The stored 
labelled examples, together with the unlabelled examples of the micro-batch, compose the 
vertices of the graph used in the subsequent steps.

Once the vertices have been collected, they are connected by edges representing the 
structural similarity of their underlying evidence atoms. The structural similarity is adapted 
from Nienhuys-Cheng (1997), by replacing the Haussdorf metric by the Kuhn–Munkres 
algorithm Kuhn (1955). Let a pair of vertices vi = {ei1 … , eiM} and vj = {ej1,… , ejK} con-
sisting of M and K evidence atoms respectively (let M > K ). Splice first computes the struc-
tural distance (Nienhuys-Cheng (1997), Definition 4) between each pair of evidence atoms 
d(eim, ejk) , where m ∈ {1,… ,M} and k ∈ {1,… ,K} resulting in a M × K distance matrix 
D . For instance, given the top and bottom examples of Fig. 1, the distance between evidence 

Fig. 1   Examples contain a ground query atom, labelled or unlabelled, and a set of ground evidence atoms 
that are linked to the query atom through their constants
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atoms etop = ���������(�������(���), 5) and ebottom = ���������(�������(���), 50) 
is computed as follow:

where p is the term position. The matrix D is then given as an input cost matrix to the Kuhn-
Munkres algorithm, in order to find the optimal mapping of evidence atoms. The optimal 
mapping is denoted here by the function g ∶ V × V ↦ {(m, k) ∶ m, k ∈ {1, … , K}} and is 
the one that minimises the total cost, i.e., the sum of the distances of the mappings. Finally, 
Splice computes the total distance between the vertices vi, vj as the sum of the distances 
yielded by the optimal mapping, normalised by the greater dimension (M in this case) of 
the matrix:

where M − K penalises all unmatched evidence atoms by the greatest possible distance, 
which is 1. Thus, M − K can be seen as a regularisation term. The distance is turned into 
a similarity s(vi, vj) = 1 − ds(vi, vj) , yielding a similarity matrix W . Then, a kNN filter is 
applied on W in order to retain only edges between very similar vertices. The resulting 
graph is used to derive labels for all unlabelled examples in the micro-batch, by obtaining 
the harmonic solution to the optimisation problem defined by Zhu et al. (2003).

Each labelled micro-batch is forwarded to a logic-based structure learner, such as OLED 
(Katzouris et al., 2016, 2018), in order to induce new or enhance existing CE rules. The 
process is repeated for each micro-batch as it arrives.

Although Splice facilitates the automated discovery of CE rules in the presence of 
incomplete supervision, its online procedure and distance function have limitations. The 
performance of Splice is compromised by the presence of irrelevant features, because the 
distance function is agnostic to the feature semantics. Moreover, it does not provide any 
guarantee about the labelling computed per micro-batch, compared to the one that would 
have been obtained if all examples were available as a large graph. In fact, as the micro-
batch size gets smaller, the harmonic solution produces labels that tend to be less depend-
ent on the unlabelled examples. It is worth noting that, in the case of true streaming (one 
example per micro-batch), the optimisation reduces to kNN classification (Chapelle et al., 
2006).

2.2 � Large‑margin nearest neighbour metric learning

Graph-based methods to semi-supervised learning rely on the cluster assumption, that is, 
similar examples should yield the same labelling. Thus, the distance function constitutes a 
key component of these methods and in fact controls the quality of the labelling. A com-
mon issue of most distance measures is that they are agnostic to the semantics of input 
features. As a result, their measurements may suffer in the presence of irrelevant or noisy 
features.

d(etop, ebottom) =
1

2p

p∑

i=1

d(etop,p, ebottom,p)

=
1

2 ⋅ 2

(
d
(
�������(���), �������(���)

)
+ d(5, 50)

)

=
1

4

(
1

2 ⋅ 1
d
(
���, ���

)
+ 1

)
=

1

4
(
1

2
⋅ 1 + 1) = 0.375

(1)ds(vi, vj) =
1

M

[
(M − K) +

∑

(m,k) ∈ g(vi ,vj)

Dmk

]



	 Machine Learning

1 3

Large-margin nearest neighbour (LMNN) Weinberger and Saul (2009) is a metric learn-
ing technique that learns a distance pseudo-metric targeted to kNN classification. Intui-
tively, LMNN attempts to increase the number of examples in a neighbourhood that share 
the same label, by learning a transformation of the input feature space using the Mahalano-
bis distance:

where the Euclidean distance can be recovered by setting M = I.
To that end, LMNN minimises a loss function consisting of two terms, one which pulls 

target neighbours closer together, and another which pushes differently labelled examples 
apart. The first term penalises large distances between instances that share the same label 
and should be nearest neighbours. In terms of the transformation in the input space, the 
sum of these squared distances is given by

where Nk
i
 denotes a set of target k-nearest neighbours for the instance xi . The target neigh-

bours of xi are those instances that we desire to be the closest to xi . In the simplest case, the 
target neighbours may be all example instances having the same label to xi.

The second term penalises small distances between differently labelled examples, called 
impostors.  For an example xi with label yi and target neighbour xj , an impostor is any 
example xl with label yl ≠ yi such that:

In other words, an impostor xl is any differently labelled example that invades the perimeter 
plus unit margin defined by any target neighbour xj of xi . Hence, the second term penalises 
violations of the above inequality as follows:

where the indicator variable yil = 1 if and only if yi = yl , and yil = 0 otherwise. Moreo-
ver, [z]+ = max(z, 0) denotes the standard hinge loss, which monitors inequality (4). If the 
inequality does not hold (i.e., the input xl lies a safe distance away from xi ), then its hinge 
loss has a negative argument and doesn’t contribute to the overall loss. The combined loss 
derived from Eq. (3) and Eq. (5) is as follows:

where the weighting parameter � ∈ [0, 1] balances the two goals. Figure 2 illustrates the 
idea behind LMNN optimisation. Before learning, an input xi may have both target neigh-
bours xj and impostors xl in its local neighbourhood. After optimisation, the impostors are 
pushed outside the perimeter established by the target neighbours and a finite margin exists 
between the perimeter and the impostors.

A derivation of the LMNN technique, proposed in Chen et  al. (2009), aims to learn 
a vector m of feature weights, instead of a distance, by assuming that M is a diagonal 
matrix with Mpp = mp ≥ 0 , and mp is the weight of the pth feature. Thus, the loss function 
depicted in Eq. (6) becomes:

(2)dM(xi, xj) = (xi − xj)
⊤M(xi − xj)
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The minimisation of the simplified objective function presented above can be represented 
as a linear optimisation problem with linear constraints as follows:

The non-negative slack variables �ijl mimic the effect of the hinge loss. In particular, each 
slack variable �ijl ≥ 0 is used to measure the amount by which the margin inequality in 
Eq. (4) is violated. The resulting weights m capture the importance of each input feature 
and is adapted in our proposed method to perform feature subset selection in order to 
exclude irrelevant or noisy logic atoms from the similarity measurements of Splice +.

2.3 � Mass‑based dissimilarity

Supervised approaches to feature selection, such as LMNN, require explicit or implicit 
computation of each feature importance, using the labels available in the training exam-
ples. However, in a semi-supervised learning task, that information may be inaccurate 
due to the limited labels. Therefore, such criteria are not always reliable and their opti-
mality guarantees suffer from the fact that very few training examples are typically used 
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(3) m ≥ 0

Fig. 2   The neighbourhood of x
i
 before and after optimisation. A distance metric is learned so that: (i) tar-

get neighbours (yellow circles) lie in a small radius from x
i
 ; (ii) impostors (blue diamond, red square) lie 

outside this smaller radius by a finite margin. Arrows indicate pull and push operations respectively (after 
Weinberger and Saul (2009)) (Color figure online)
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during the optimisation. In order to improve feature selection, we attempt to combine 
LMNN to a form of unsupervised metric learning.

A mass-based dissimilarity, proposed by Ting et al. (2019), employs estimates of the 
probability mass to quantify the dissimilarity of two points. Mass dissimilarity measure-
ments mainly depend on the distribution of the data. The intuition is that the dissimilar-
ity of two points depends on the amount of probability mass in the region covering the 
two points. Thus, two points in a dense region are less similar to each other than two 
points of the same interpoint distance in a sparse region.

Let Hp denote a hierarchical partitioning of a space ℝn into a set of non-overlapping 
(bottom-level) regions that collectively span ℝn . Moreover, each region in the hierar-
chy corresponds to the union of its child regions. Let H(D) denote the set of all such 
hierarchical partitioning Hp that are admissible under a data set D, such that each non-
overlapping region contains at least one point from D. Then the smallest region cover-
ing a pair of points x, y ∈ ℝ

n with respect to a hierarchical partitioning model Hp of ℝn 
is defined as:

where depth(r;Hp) is the depth of region r in the hierarchical model Hp.
Suppose that a dataset D is sampled from an unknown probability density function F. 

Then, the mass-based dissimilarity of x and y w.r.t. D is defined as the expectation of the 
probability that a randomly chosen point would lie in the smallest region R(x, y ∣ Hp):

where the expectation is computed over all possible partitionings H(D) of the data. In prac-
tice, however, mass-based dissimilarity can be estimated from a finite number of partition-
ings Hp ∈ H(D), p = 1,… , T  as follows:

where P̃(R) = 1

∣D∣

∑
z∈D �(z ∈ R) estimates the probability of the smallest region R by 

counting the data points in that region; and �(⋅) denotes an indicator function. Thus, the 
probability of the data falling into the smallest region containing both x and y , is analogous 
to the shortest distance between them measured in the geometric model.

In order to generate partitionings Hp , a recursive partitioning scheme is employed based 
on the concept of the Isolation Forest (Liu et al., 2008). Isolation Forest is essentially an 
ensemble of random trees, called Isolation Trees. Each Isolation Tree is built independently 
using a subset of the data. At each internal node of the tree, a random split partitions the 
data at that node into two non-empty subsets. The process is repeated recursively until 
either every data point is isolated, that is all regions contain a single point, or a given maxi-
mum tree depth is reached.

Subsequently the resulting Isolation Forest can be used to compute the mass-based dis-
similarity of Eq. (9). Since each Isolation Tree essentially represents a partitioning Hp , the 
mass-based dissimilarity can be defined as:

R(x, y ∣ Hp) = argmax
r∈Hp s.t.{x, y}∈ r

depth(r;Hp),

m(x, y ∣ D) = EH(D)

[
PF(R(x, y ∣ Hp;D))

]
,

(9)m̃(x, y ∣ D) =
1

T

T∑

p=1

P̃(R(x, y ∣ Hp;D)),
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where ∣R(x,y∣Hp)∣

∣D∣
 estimates the probability of region R, as denoted by P̃(R) in Eq.  (9). To 

compute Eq.  (10), x and y are passed through each tree to find the mass of the deepest 
node, containing both x and y i.e., 

∑
p ∣ R(x, y ∣ Hp) ∣ . Finally, m̃ is the mean of these 

masses over the T trees.

2.4 � Temporal label propagation

Traditionally, graph-based methods to semi-supervised learning (Zhu et al., 2009) assume 
that all labelled and unlabelled data are stored in memory and thus are available during 
the optimisation (label propagation) that yields the harmonic solution. However, that 
is an unrealistic assumption in online processing of data streams. Splice   as presented in 
Sect. 2.1, relaxes this assumption by storing previously seen labelled examples and reusing 
them in subsequent micro-bathes. Nevertheless, it still ignores previously seen unlabelled 
examples and by extension their respective distances to the rest of the graph. Therefore, 
Splice cannot guarantee that the global harmonic solution obtained by label propagation on 
the entire graph is preserved on the local graph of the micro-batch.

Temporal Label Propagation (TLP) (Wagner et al., 2018) is a recent approach to label 
propagation for fast-moving data streams. TLP stores a synopsis of the full history of the 
stream, in order to retain information about the labelled and the unlabelled examples seen 
so far and incorporate it into the subsequent optimisations. To that end, TLP allows for a 
weighted graph G to be encoded into a smaller (re-weighted) graph, using only a subset V� 
of the actual vertices V, called terminals. The reduced graph G⟨V�⟩ is called short-circuit 
graph and it is known to retain the global properties of G ; most importantly, it preserves the 
effective weights between every pair of terminal vertices. Wagner et al. (2018) proved that 
this property allows for the harmonic solution to be preserved in the synopsis graph.

The Laplacian matrix of G⟨V�⟩ , required to obtain the harmonic solution, is given by the 
Schur Complement Dörfler and Bullo (2013). Since computing the Shur Complement is as 
expensive as computing the harmonic solution on the entire graph G , it provides no sub-
stantial speed-up for offline label propagation. However, TLP operates in a online fashion 
and computes G⟨V�⟩ as a sequence of local operations, called star-mesh transformations. 
This is a direct consequence of the sequential property of the Schur complement ( Zhang 
(2005), Theorem 4.10; Dörfler and Bullo (2013), Lemma III.1).

Definition 1  A star-mesh transformation on a vertex vo of a weighted graph G = (V ,E,W) 
is defined as follows: 

1.	 Star: Remove vo from G together with its set Eo of incident edges (vo, v) ∈ Eo.
2.	 Mesh: For every pair of vertices v, v� ∈ V  such that (vo, v) ∈ Eo and (vo, v�) ∈ Eo , add 

the edge (v, v�) to E with weight wv,v� =
wv,vo

wvo ,v
�

degree(vo)
 . If (v, v�) is already in E, then add the 

new weight wv,v′ to its current weight.

The intuition of TLP is to apply star-mesh transforms as the data arrive for process-
ing, in order to continuously update the in-memory graph synopsis and deliver labels for 
the incoming unlabelled examples, by computing the harmonic solution on the compressed 

(10)m̃(x, y) =
1

T

T∑

p=1

∣ R(x, y ∣ Hp) ∣

∣ D ∣
,
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graph. The star-mesh transforms remove edges by meshing their weights with the remain-
ing graph, so that the information provided by the removed vertex vo remains encoded. 
Thus, the synopsis retains the ability to compute the labelling, for the rest of the vertices, 
as if vo was still in the graph ( Wagner et al. (2018), Theorem 4.1).

More formally, consider a (possibly infinite) data stream {vt}∞t=1 of incoming example 
vertices that can be either labelled or unlabelled. TLP maintains a graph G⟨V�⟩ storing the 
� more recent unlabelled examples, in addition to a pair of labelled node clusters, each 
holding all the positive and negative examples seen so far. When a new unlabelled example 
arrives, TLP appends it to G⟨V�⟩ and if the memory � has been exceeded, it removes the 
oldest unlabelled example by applying the star-mesh transform of Definition 1. In the sim-
plest case, where a labelled example arrives, TLP just appends it to the appropriate cluster 
node, thus always maintaining � + 2 nodes. The harmonic solution for each new unlabelled 
example is then computed on G⟨V�⟩ and it is provably equal to the one computed on the 
entire stream seen so far.

3 � Online semi‑supervised learning combining structure 
and mass‑based predicate similarity

Splice, as presented in Sect. 2.1, aims to effectively learn the structure of composite event 
rules in the presence of incomplete supervision. However, we have identified a number 
of issues in its graph construction process, that may compromise the online labelling of 
the unlabelled data. First, the underlying structural distance is sensitive to the presence 
of irrelevant or noisy features. Second, the distance measurements between labelled and 
unlabelled data, inevitably, are as informative as the provided labels. If the given labels are 
not representative of the underlying class distribution, so are the measurements. Third, the 
online labelling inferred from the local graphs per micro-batch, provides no guarantee with 
respect to the global solution obtained if all data where to be accessed at once.

The new method presented here, called Splice + , improves the quality of the graph con-
struction component, leading to more robust and accurate labelling of the incoming unla-
belled data. An overview of the components of Splice + is shown in Fig. 3. We present a 
hybrid distance measure composed of two elementary distances, that overcomes the draw-
backs of the structural distance of Splice. The first of the two distance components is an 
enhanced version of Eq. (1) that accounts for irrelevant or noisy features by selecting only 
a subset of them, that is, the ones optimising kNN classification on labelled data. Since 
such a feature selection is achieved using only the labelled data, the selected features may 
not always be representative of the underlying classes. Therefore, we combine the opti-
mised structural distance with a data-driven mass-based dissimilarity, adapted to logical 
atoms. This dissimilarity samples the space of logical structures, and employs mass estima-
tion theory to compute the relative distance between examples, measured as the probability 
density of their least general generalisation (Plotkin, 1971).

In order to render Splice aware of the temporal nature of the data in CER, we further alter 
its strategy for interconnecting graph vertices. We connect each unlabelled vertex to its k-near-
est labelled neighbours, as well as, to the temporally preceding unlabelled vertex. This way we 
promote interactions between temporally adjacent unlabelled vertices during label propaga-
tion. Finally, we store a synopsis of the full history of the stream, by means of a short-circuit 
operator, which preserves the effective distances of labelled and unlabelled example vertices 
to be used in subsequent optimisations. The proposed improvements introduced in Splice + 
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are detailed in the following subsections. To aid the presentation, we employ examples from 
human activity recognition in video recordings.

3.1 � Large‑margin feature selection for logical structures

In order to render the structural distance of Eq. (1) aware of irrelevant or noisy features, we 
introduce a mechanism for feature selection based on the approach of LMNN metric learn-
ing. We adapt the idea of feature weighting, as presented in Sect. 2.2, to learn a binary vector, 
instead of real-value one, representing the set of selected logical atoms that should be used 
for computing distances. Towards that goal, we use a similar approach to propositionalization 
(Zucker & Ganascia, 1996; Alphonse & Matwin, 2002). Let A be a set of first-order atoms 
that can be constructed from a Herbrand base B and a set of mode declarations M , by replac-
ing constants with variables in B . Assuming a strict ordering of atoms in A , let b be a vec-
tor of binary variables, one for each first-order atom ai ∈ A . Thus, each indicator variable 
bi = 1 if the ith atom is selected, and bi = 0 otherwise. Since each labelled training example is 
essentially a clause c, it can also be represented by a binary vector xc = [x1,… , x∣A∣]

⊤ , where 
each variable xi refers to the presence of the corresponding atom ai from A in clause c. For 
instance, assuming that B contains the ground atoms appearing in Fig. 1, we can create an 
ordered set of atoms as follows:

A =
{
���������(�������(�), t),

���������(�������(�), t), ���������(����(�), t),

�����������
���(�, �, t), �����(�, �, 34, t)
}

Fig. 3   The Splice + procedure
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The top example from Fig.  1 is represented as xtop = [1, 1, 0, 1, 1] , the middle one as 
xmid = [0, 1, 1, 0, 0] and the bottom one as xbot = [1, 1, 0, 1, 1] . The dissimilarity of two 
such examples can be measured by a simple Hamming distance, which is equivalent to the 
general Minkowski distance for p = 1 . Since the Minkowski distance is a generalisation of 
the Euclidean distance, we reformulate the loss function of Eq. (7) as follows:

where x is the clausal form of an example, represented as a binary vector according to a 
predetermined strict ordering over A , and b is the vector of indicator variables denoting 
which features in x are selected. Moreover, we drop the first term of the loss function (cor-
responding to �pull ), since it has been shown by Song et al. (2017) that the simpler problem 
often results in better solutions. Moreover, the simpler loss function no longer depends on 
the parameter � . The resulting minimisation problem is an integer programming problem 
and can be solved using variants of the branch-and-bound or branch-and-cut methods (Wil-
liams, 2009), albeit less efficiently, since it is NP-hard, than the real-valued problem1:

The intuition of our proposed for feature subset selection, called Large-Margin Feature 
Selection (LMFS), is to keep the minimal set of logical atoms (features) that are necessary 
to discriminate a given set of labelled examples. Note that the slack variables that moni-
tor the hinge loss are integers, instead of real values since a hamming distance yields only 
integer differences. Moreover, we have added an extra constraint that forces all examples 
to have at least one selected logical atom. This constraint is necessary to avoid degenerate 
solutions that remove all atoms yielding empty examples.

Given the optimal vector b , we can generalise all future exam-
ples by removing features for which bi = 0 . For instance, if the opti-
mal vector is b⋆ = [1, 1, 1, 0, 0] , then the top example would become 
vb
top

= b⋆xtop = [0, 0, 0, 1, 0] = {���������(�������(�), t), ���������(�������(�), t)} , 
while the middle example would become 
vb
mid

= b⋆xmid = [0, 0, 1, 0, 0] = {���������(����(�), t)} . Then, the structural distance 
can be computed as usual, by applying Eq. (1) on the generalised examples:

�(b) = (1 − �)
∑

i,j∈Nk
i

b ∣ xi − xj ∣ +�
∑

i,j∈Nk
i

∑

l

(1 − yil)
[
1 + b ∣ xi − xj ∣ −b ∣ xi − xl ∣

]
+
,

(11)

minimise
∑

i,j∈Nk
i

∑

l

(1 − yil)�ijl

subject to (1) b ∣ xi − xl ∣ −b ∣ xi − xj ∣≥ 1 − �ijl

(2) bxi ≥ 1

(3) �ijl ∈ ℕ
≥

(4) b ∈ {0, 1}∣A∣

(12)db
s
(vi, vj) = ds(v

b
i
, vb

j
),

1  Note that in a semi-supervised problem the labelled examples are very few and sparse, leading to a very 
small number of constraints and thus Eq. (11) can be solved fast enough.



Machine Learning	

1 3

where vi, vj are examples and vb
i
, vb

j
 their generalised counterparts, where some first-order 

atoms have been removed. The distance measures notation is summarised in Table 1. One 
issue that may arise from selecting features using only the labelled examples is that some 
atoms may appear only in unlabelled examples, and thus, not considered during the optimi-
sation. Regarding those atoms, that appear only in the unlabelled examples, we assume that 
they are always selected ( b = 1 ) and use them in distance measurements.

LMNN requires training examples to be accompanied by labels, which in our case leads 
to the selection of features that discriminate between positive and negative labelled exam-
ples. However, in a Hamming space distances change quite abruptly because a single mis-
match between two binary vectors always yields a penalty of 1 between the vectors. There-
fore, while in a Euclidean space two points can be close or far in a specific dimension, 
according to their real-valued difference, in a Hamming space they are either the same or 
different in that dimension. Thus, clauses formed from training examples may appear very 
different inside the boundaries of a specific class, leading to very sparse solutions since the 
optimisation would try to force them to become similar by removing atoms that cause mis-
matches. To avoid such situations, similar to Deng and Luo (2015), we perform clustering 
of the examples of each class and use the clusters as distinct classes to solve the optimisa-
tion problem.

Since we are interested in clustering the examples of each class into cohesive clusters, 
we cannot use a distance-based clustering, as it will suffer from the same noisy and irrel-
evant features that we aim to get rid of in the first place. To avoid that pitfall, we employ 
a clustering approach based on �-subsumption. Examples in a cluster that are connected 
through a �-subsumption relation and have the same label, define a taxonomic hierarchy 
containing all examples that are members of a specific concept. For instance, if two exam-
ples of the same class and length only differ in one atom, they cannot be on the same 
cluster under �-subsumption. Consider the top and middle examples of Fig. 1. They should 
form a pair of unit clusters, since they belong to opposite classes. If the bottom example 
was also positive, then it should belong to the same cluster as the top example since it �
-subsumes the top example. Thus, the resulting set of clusters represents a strict partition-
ing of the example space into distinct sub-concepts. The examples inside a specific cluster 
express more general versions of the same concept (under �-subsumption), while examples 
between clusters of the same class express alternative definitions of the concept. Thus the 
push constraint of Eq.  (11) enforces alternative definitions to differ in at least one atom. 
Given such a clustering, the optimisation of Eq. (11) should select features that respect that 
partitioning, identifying which features are necessary for discriminating each sub-concept 
(Deng & Luo, 2015).

Algorithm 1 presents the pseudo-code for selecting the first-order atoms that best dis-
criminate the known labelled examples into sub-concepts. The algorithm requires as input 
a set of labelled examples, a set of mode declarations, and produces a vector of selected 

Table 1   Distance measures 
notation

Symbol Description

d
s

Structural distance (Splice)
d
b

s
Optimised (LMFS) structural distance

m̃ Mass-based dissimilarity
d
b

h
Optimised (LMFS) hybrid distance (Splice +)

d
h

Non-optimised hybrid distance
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features. It starts by partitioning the given examples into positive and negative (line 1). 
Then for each of the two sets it finds the example having the most evidence atoms (ties are 
broken randomly) and creates unit clusters with these examples (lines 2–3). For each of the 
remaining examples it either appends to an existing cluster, if another example exists that 
is �-subsumed by the candidate, or it creates a new unit cluster (lines 4–7). Finally, it solves 
the optimisation of Eq. (11) using the clusters as classes and returns the vector of selected 
features (lines 8–9).

3.2 � Mass dissimilarity for logical structures

Supervised learning approaches to feature selection require explicit or implicit computa-
tion of the information/importance of each feature using the labels available in the training 
examples. However, in a semi-supervised learning task, the few labels that are often avail-
able are not sufficient for acquiring trustworthy estimation of the feature importance. Thus, 
common feature selection criteria are not reliable and their optimality guarantees suffer 
from the fact that only a few training examples are available.

In order to address the issue, we combine the optimised distance, as presented in 
Sect. 3.1, with a data-driven dissimilarity that uses mass estimation to measure the distance 
between data points. The intuition of the measure is that two points are considered to be 
more similar if they coexist in a sparse space rather than in a dense one. Unlike the distance 
estimation presented in the previous section, the proposed approach exploits both labelled 
and unlabelled data to quantify the distances between examples of interest.

To that end, we adapt the approach presented in Sect. 2.3 to handle logical structures 
by means of the Herbrand base B and a set of mode declarations M , the combination of 
which generates a set of logical atoms A (see Sect. 3.1). Since the space of logical atoms is 
a hypercube {0, 1}∣A∣ , we can define a hierarchical partitioning H of the hypercube by ran-
domly constructing a Half-Space Tree (Ting et al., 2013). In contrast to Ting et al. (2019), 
which assumes real-valued features, we can construct the trees beforehand because each 
internal node of the tree can only have one possible split, since atoms are binary. Algo-
rithm 2 presents the pseudo-code for creating a forest of binary random trees.

Algorithm 1   LMFS V
L
, M
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The algorithm requires as input a set of first-order atoms, a number of trees, and a maxi-
mum height for each tree. We start from an empty set and iteratively generate random trees 
(see lines 1–4). Each node in the tree consists of a split atom, a left and right subtree, as 
well as, a size variable that stores the number of examples that have matched the path to 
this node. Each tree is built recursively by picking an atom at random from the given set 
of available atoms and creating two random subtrees on the remaining atoms (lines 9–11). 
The process terminates if no atoms are left in the set A or the maximum height is reached.

Note that during tree creation, each internal node of each tree has zero size. Tree crea-
tion happens before any data are processed. The size of the nodes is updated as more data 
stream in. Algorithm 3 describes this update process. The algorithm requires as input a for-
est of binary random trees and a set of examples. For each example it updates the counts of 
the internal nodes of each tree (lines 1–2). The update procedure is a recursive process that 
increments the size of the current node and then proceeds to the update of the child node 
that matches the split criterion of the current node (lines 5–7). Since each example is a set 
of atoms the split criterion match is checked by the membership of the split atom. Thus, 
the path from the root to the leaf that contains the matched atoms of the given example 
increments the counts of its nodes. Updating the size of single tree, given a single example, 
is equivalent to traversing a single path from the root to a leaf in a binary tree. Thus, the 
runtime complexity of updating the entire forest is O(|F||V| log(h)) , where h is the height 
of the tree and trees are height-balanced.

The intuition behind this relational version of Half-Space Trees is that we estimate the 
mass of specific areas of the subsumption lattice generated from a given Herbrand base 
B and constrained by the mode declarations M . Figure 4 depicts a part of the subsump-
tion lattice constructed from the atoms appearing in the training sequence of Fig. 3. The 
top of the lattice represents the empty clause, a rule having no literals, while the bottom 

Algorithm 2   CreateForest A, T , h
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represents the bottom clause, a rule containing all possible literals. Note that the bottom 
clause is a theoretical concept and it is never actually constructed. The highlighted part of 
the lattice presents a possible Half-Space Tree constructed by selecting one split atom per 
level, while the numbers represent the size of each node. In this case the sizes correspond 
to the three examples of Fig. 1. Therefore, each tree essentially represents only a part of the 
lattice and estimates the mass of each node from data. Given two examples, their overlap 
(set of common atoms) is quantified as the size of the deepest node in the tree that contains 
all common atoms along its path from the root. If the size is small, then these two examples 
are located in a sparse part of the space and thus they are considered more similar. Con-
sider for instance the top and middle examples of Fig. 1. Their set of common atoms is just 
the atom ���������(�������(�), t) , which, in the tree appearing in Fig. 4, is located in 
the first level of the tree and has size 3. Therefore, these examples co-exist in a dense part 
of the tree and they may be considered less similar. Note that the dissimilarity estimates the 
mass of the least general generalisation (lgg) of the examples, as defined by Plotkin (1971), 
which represents the least general rule that covers both examples. If the mass of their lgg 
is high then the rule is very common and covers a lot of examples which indicates that the 
rule is not very interesting.

The resulting Half-Space Forest can be used to compute the dissimilarity of Eq. (10) for 
a pair of examples as follows:

where vi, vj are two examples, Hp is a binary Half-Space Tree (out of T), D is the set of all 
examples used to update the trees and R, similar to Sect. 2.3, is the deepest region covering 
both examples. Thus, given the tree presented in Fig. 4, the top and middle examples of 
Fig. 1 would have dissimilarity m̃(vtop, vmiddle) = 1 , since |R(vtop, vmiddle ∣ H1)| = 3 , |D| = 3 
and T = 1.

3.3 � Robust graph construction and labelling

Given a set of examples our goal is to connect them by edges representing the similarity 
of the underlying evidence atom sets. The resulting graph is used to derive labels for all 

m̃(vi, vj) =
1

T

T∑

p=1

∣ R(vi, vj ∣ Hp) ∣

∣ D ∣

Algorithm 3   UpdateForest F, V
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unlabelled example vertices in the current data micro-batch. In order to construct the simi-
larity graph for label propagation we combine the mass-based dissimilarity, as presented in 
Sect. 3.2, with the optimised structural distance of Eq. (12) as follows:

where � controls the relative importance of each of the two distances (see Table 1 for the 
notation of the distance measures). Similar to Splice, the hybrid distance is turned into a 
similarity as 1 − db

h
(vi, vj).

Fully connecting the vertices generates a N × N symmetrical adjacency matrix W , com-
prising the weights of all graph edges. In order to make the graph sparser, we aim to select 
the stronger edges on each neighbourhood. To that end, Splice + uses a temporal variant 
of kNN that connects each unlabelled vertex to its k-nearest (most similar) labelled neigh-
bours, as well as to its temporally adjacent ones. For instance, the bottom example in Fig. 1 
would connect to the examples at time-points 49 and 51, since they are temporally adjacent 
to time-point 50, and would also connect to its k closest labelled examples. If k = 1 then it 
would connect only to the top example since they are almost identical. The intuition behind 
this extension of kNN is that temporally adjacent vertices should affect the labelling of 
each other. In terms of label propagation, temporally adjacent neighbours should exchange 
information about their labelling, albeit weighted by their similarity.

Moreover, in order to obtain guarantees for the online labelling achieved by label propa-
gation on the local graphs built from the micro-batches, Splice + stores a synopsis of the 
graph, as presented in Sect. 2.4. Given a memory size parameter � , the synopsis removes 

db
h
(vi, vj) = 𝛼 db

s
(vi, vj) + (1 − 𝛼) m̃(vi, vj),

Fig. 4   Path selected by a random tree from the subsumption lattice
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older vertices from the graph (when memory size is exceeded), in order to make room for 
newer ones, by meshing their edges to the rest of the graph using star-mesh transforms. 
The harmonic solution computed on the compressed graph is guaranteed to be equal to the 
one computed on the entire stream seen so far (Wagner et al., 2018). Therefore, the synop-
sis renders the labelling invariant to different batch sizes. Algorithm 4 presents the graph 
construction pseudo-code.

The algorithm requires as input a pre-built Half-Space Forest, and a set of examples. 
The examples are partitioned into labelled and unlabelled at line 1. Then only the examples 
received in the current micro-batch t (labelled Vt

L
 and unlabelled Vt

U
 ) are used for updat-

ing the forest counts at line 2. Subsequently, if the micro-batch t contains only unlabelled 
examples and labels have been added in VL since the last time LMFS was run, the optimal 
set of features is re-computed (lines 3–4). In lines 5–9 the graph connection process takes 
place. Each stored example is connected to the unlabelled examples received at micro-
batch t. The set V� of stored examples is composed of all the labelled examples VL and 
the � stored unlabelled ones, VU ⧵ Vt

U
 , where � is the synopsis size. Then, the temporal-

kNN connection heuristic is applied at line 10 to make the graph sparser. As a final step, 
while the number of stored unlabelled examples is greater than the given memory size � , 
the algorithm removes the oldest example together with its edges and applies a star-mesh 
transform to its neighbours (lines 11–15).

Algorithm 4   GraphConstruction F, V, �
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4 � Empirical evaluation

Our experimental hypothesis is that Splice + should outperform Splice. To that end, we 
compare Splice + to its predecessor (Splice) on the task of composite event recognition 
(CER), using OLED, an open-source software2 for online structure learning. We also 
perform experiments using an Iterative Cross-Training (ICT) technique, proposed by 
Soonthornphisaj and Kijsirikul (2004). In order to be able to learn EC theories, we replace 
the Progol system (Muggleton, 1995) with ILASP (Law et al., 2016, 2018), a state-of-the-
art structure learner. Since ICT combines ILASP with a Naive Bayes classifier, we refer 
to the combined system as ILASP-NB. For the experiments, we use the publicly avail-
able benchmark activity recognition dataset of the CAVIAR project,3 the publicly available 
maritime monitoring dataset, concerning the activity of vessels in the Atlantic Ocean, near 
the port of Brest, France,4 and a fleet management dataset, recording the activity of vehi-
cles around Greece and some neighbouring countries.5 The experiments were performed 
on a computer with an Intel i7 4790@3.6GHz CPU (4 cores, 8 threads) and 16GiB of 
RAM. All presented experiments can be reproduced, following the provided instructions.6

4.1 � Description of datasets

The activity recognition dataset comprises 28 surveillance videos, where each video frame 
is annotated by human experts on two levels. The first level contains SDEs (simple, derived 
events) that concern instantaneous activities of individual persons, detected on video 
frames, such as when a person is walking or staying inactive. In addition, the coordinates 
of tracked persons are used to capture spatial relations, e.g. two persons being relatively 
close to each other. The second level contains CEs, describing activities between multiple 
persons and/or objects, i.e., people meeting or moving together.

Similar to our earlier work (Michelioudakis et  al., 2019), we focus on the ���� and 
���� CEs, and from the 28 videos, we extract 19 sequences that contain annotations for 
these CEs. The rest of the sequences in the dataset are ignored, as they do not contain posi-
tive examples of these two target CEs. Out of the 19 sequences, 8 are annotated with both 
���� and ���� activities, 9 are annotated only with ����  and 2 only with ���� . The total 
length of the extracted sequences is 12, 869 video frames. Each frame is annotated with 
the (non-)occurrence of a CE and is considered an example instance. The dataset contains 
a total of 63, 147 SDEs and 12, 869 annotated CE instances. Out of those, there are 6, 272 
example instances of ���� and 3, 722 instances of ���� . Thus, for both CEs the number of 
negatives is significantly larger than the number of positives.

The maritime dataset consists of vessel position signals (AIS messages) sailing the 
Atlantic Ocean, around Brest, France. The SDEs take the form of compressed trajecto-
ries, comprising “critical points”, such as communication gap (a vessel stops transmit-
ting position signals), vessel speed change, and turn. It has been shown that compressing 

2  https://​github.​com/​nkatzz/​OLED.
3  http://​homep​ages.​inf.​ed.​ac.​uk/​rbf/​CAVIA​RDATA1.
4  https://​zenodo.​org/​record/​11675​95.
5  https://​www.​vodaf​onein​novus.​com.
6  Instructions for reproducing all experiments may be found in:
  https://​users.​iit.​demok​ritos.​gr/​~vagmcs/​pub/​splice_​plus.

https://github.com/nkatzz/OLED
http://homepages.inf.ed.ac.uk/rbf/CAVIARDATA1
https://zenodo.org/record/1167595
https://www.vodafoneinnovus.com
https://users.iit.demokritos.gr/%7evagmcs/pub/splice_plus


	 Machine Learning

1 3

vessel trajectories allows for accurate trajectory reconstruction, while at the same time 
improving stream reasoning times significantly (Patroumpas et  al., 2017). We focus on 
the ���������� and �������� CEs. The former expresses a potentially illegal activity 
where two vessels are moving slowly in the open sea and are close to each other, possibly 
exchanging commodities, while the latter describes the activity of piloting a vessel. Since 
the dataset is unlabelled, we produced synthetic annotation by performing CER using the 
RTEC engine (Artikis et al., 2015) and hand-crafted rules of ���������� and �������� 
CEs (Pitsikalis et al., 2019). The CE annotation is publicly available.7 We have extracted 
6 sequences for each CE from the dataset. Regarding ���������� , the total length of 
the sequences is 11,  930 timestamps, while for �������� , sequences comprise 6,  678 
timestamps. There are 1,  425 instances in which ���������� occurs and 769 in which 
�������� occurs.

The fleet management dataset consists of vehicles moving around Greece and neigh-
bouring countries. The SDEs include positional information, such as vehicle speed 
changes, proximity to points of interest and operational status, such as fuel level. We focus 
on ������������������ and ���������������� CEs, since they are the more complex 
ones. The former expresses a driving activity where the driver is over-speeding despite hav-
ing limited fuel, while the latter describes various dangerous driving behaviours, including 
over-speeding on ice, abrupt accelerating or braking and cornering other vehicles. Since 
the dataset is unlabelled, we produced synthetic annotation similar to the maritime dataset, 
using the RTEC engine and hand-crafted rules. We have extracted 10 and 12 sequences for 
������������������ and ���������������� respectively. The ������������������ 
CE, comprises 13, 255 timestamps, while ���������������� comprises 13, 387 times-
tamps. There are 1, 589 example instances that ������������������ occurs and 639 for 
����������������.

4.2 � Experimental setup

Two learning scenarios have been evaluated, with corresponding experiments. In the first 
scenario, a number of micro-batches were selected uniformly at random and their labels 
were hidden from the learner. We experimented retaining 5% , 10% , 20% , 40% and 80% of 
the micro-batches labelled. The micro-batches were selected using stratified sampling in 
order to retain the original class proportions on each supervision percentage. We repeated 
the random selection 20 times, leading to 20 runs per supervision level, in order to obtain a 
good estimate of the performance.

This random selection scenario was the one used in Splice, making the results directly 
comparable to our earlier work (Michelioudakis et al., 2019). However, in a typical stream 
learning situation, usually, the assumption of labels arriving randomly on-stream is unre-
alistic. A more appropriate assumption is that a training set appears at the beginning of the 
stream, or stored in a database as historical data, while the rest of the data stream-in com-
pletely unsupervised. Moreover, in contrast to the random selection, labels sampled only 
from a specific time frame are less representative of the actual distribution of the underly-
ing classes, which makes the problem more challenging.

Our second evaluation scenario simulates this more realistic setting, using 1, 2 and 4 
labelled training sequences (out of 6) for the maritime dataset, and 1, 2, 4 and 8 (out of 

7  https://​zenodo.​org/​record/​25572​90.

https://zenodo.org/record/2557290
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19) for the CAVIAR and the fleet management dataset. We considered only sequences 
that contain both positive and negative examples and generated 5 test sets. For each test 
set we used the remaining sequences for creating the train sets. More precisely, each of 
the remaining sequences is used to generate multiple train sets containing a number of 
labelled sequences appearing in the beginning of the train set, while the rest of the train 
set remains completely unlabelled. For instance a 1 labelled sequence set contains one 
sequence that is fully labelled and appears first in the train set, while every other sequence 
in the set remains completely unlabelled. In order to avoid the selection bias, we exhaus-
tively generated all possible 1 labelled sequence sets for each test set, while for 2, 4 and 8 
we randomly selected some candidate sets. This process led to 40 runs for the ���� and 
������������������ CEs, 72 for the ���� CE, 60 for the ���������������� CE, and 
30 for the �������� and ���������� CEs. Since each sequence contained different pro-
portions of positive and negative examples, the runs were not stratified.

We present accuracy results for both supervision completion and structure learning 
using the F1-score. All reported statistics are micro-averaged over the recognised instances 
of CEs. The F1-score of supervision completion is measured over both train and test sets. 
For structure learning, the reported statistics on the CAVIAR dataset, were collected using 
10-fold cross validation over the 19 video sequences, while complete videos were left out 
for testing. The same number of folds were also used for the fleet management dataset. In 
the maritime dataset, the statistics were collected using 6-fold cross validation over the 
selected sequences, leaving again complete sequences out for testing.

We follow Ting et  al. (2019) and use T = 100 random trees for computing the mass-
based dissimilarity, and � = 0.5 in order to equally weight the two distance measures. We 
only present results for the best performing k values for both Splice and Splice + in order to 
avoid clutter. We have experimented using k ∈ [1, 5] , but for larger k values, performance 
was notably decreasing for both algorithms. It is worth noting that for any combination of 
k, Splice + always outperforms Splice. However, the connection strategy used by Splice + 
is not directly comparable to that of Splice. A more detailed hyper-parameter selection for 
Splice can be found in Michelioudakis et al. (2019). ILASP was trained using the default 
parameters.

4.3 � Experimental results

4.3.1 � Activity recognition

First, we compare the performance of Splice + against Splice on the activity recognition 
dataset for both ���� and ���� CEs. Figure 5 shows the F 1-score achieved by the supervi-
sion completion on both scenarios, without any structure learning. The results suggest that 
Splice + effectively infers the missing labels and its performance increases as more supervi-
sion is given. More importantly, it significantly outperforms both Splice and ILASP-NB in 
most cases even at high supervision levels ( 80% uniform supervision or 8 sequences). As 
expected, the difference is greater in the more realistic scenario, where labelled data are 
provided only at the beginning of the training sequence. ILASP-NB achieves comparable 
accuracy to Splice + on the random supervision scenario for low supervision levels. How-
ever, it is worth noting that ILASP-NB is a batch learning system that requires all data to 
be available at once and may require multiple iterations to converge. As a result, it was 12 
times slower than Splice + in the CAVIAR dataset.
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Improved performance in Splice + comes at the cost of a decrease in runtime, i.e., the 
time to process both the train and test set, as shown in Fig. 6. Note that Splice + is always 
slower than Splice, since it has to update the trees and select appropriate features for every 
micro-batch. However the penalty is tolerable in absolute times, as it does not exceed 15 
seconds. Note that runtime tends to increase between 5% and 20% of random supervision, 
and then falls again, as more supervision is given. This is due to fact that Splice + , for effi-
ciency reasons, performs feature selection only when a labelled micro-batch is followed 
by an unlabelled one (see Algorithm 4). In the absence of unlabelled micro-batches, we 
simply store the incoming labels and perform the costly optimisation task only when nec-
essary, i.e., in the presence of unlabelled data. In the cases of 20% or 40% supervision, this 
situation occurs much more frequently than when 5% or 80% supervision is provided. A 
similar pattern is observed in the early supervision setting, where feature selection only 
runs once, since all labels arrive in the beginning of training.

Table 2 compares the F 1-score of Splice + using the default, optimized hybrid distance 
( db

h
 ), as presented in Fig. 5, against the simpler structural distance ( ds ). We only present 

the F 1-score for low supervision levels because they are the more interesting in a semi-
supervised setting. The results suggest that the informed hybrid distance always performs 
better than the simpler structural distance. In particular, the proposed distance led to 5% 
and 8% improvement in F 1-score on average for the random and early supervision scenarios 
respectively.

Fig. 5   F1-score of supervision completion on ���� (left) and ���� (right) as supervision increases. In the 
first scenario, supervision arrives uniformly at random (top), while in the second one is provided only at 
the beginning of the sequence (bottom). The notation d

s
 and db

h
 refer to the structural and hybrid distances 

respectively



Machine Learning	

1 3

Figure  7 presents the structure learning results using the OLED system for con-
structing CE rules. We compare OLED using Splice for supervision completion against 
OLED using Splice + , and OLED alone without any supervision completion. OLED 
alone only uses the supervised portion of each dataset for training, while everything else 
is ignored. As expected, Splice-OLED and Splice +-OLED always outperform OLED, 
confirming that our supervision completion approach is indeed very helpful for learn-
ing good CE rules in the presence of missing labels. Comparing Splice +-OLED to its 
predecessor Splice-OLED the only noticeable difference is in the ���� CE, when little 
supervision is available. In that case, the Splice + labels lead to better structure learning, 
in both supervision settings. The same does not seem to hold for the ���� CE. This is 
mainly due to the fact that the ���� activity can be captured by a single rule and thus it 
is easier to learn from a small portion of data, while ���� requires several distinct rules.

4.3.2 � Maritime monitoring

For the maritime monitoring dataset, we performed the same evaluation, as for human 
activity recognition, for both �������� and ���������� CEs. The F 1-score of supervision 

Fig. 6   Runtime performance of supervision completion on ���� (left) and ���� (right) as supervision 
increases. The runtime is macro-averaged over all samples. In the first scenario, supervision arrives uni-
formly at random (top), while in the second one is provided only at the beginning of training (bottom). We 
do not present the runtime of ILASP-NB here, since it is much higher than Splice + ( ≈ 400 seconds) and the 
scaling does not help the discussion of the results
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completion on both scenarios, using the same notation, is presented in Fig. 8. The results 
suggest that Splice + effectively infers the missing labels, significantly outperforms Splice 
in all cases, even for high supervision levels ( 80% uniform supervision or 8 sequences). 
The difference is again larger in the early supervision scenario, where supervision appears 
only in the beginning of training. The results of ILASP-NB are not shown here, due to very 
high training times of the algorithm. In particular, a single run of ILASP-NB requires more 
than 3 hours to complete, while Splice + achieves better results in 30 seconds.

An interesting observation is that in the early supervision scenario the F 1-score of 
�������� CE is very high even for 1 labelled sequence and does not change much as the 
supervision increases, which indicates that one sequence has enough labels to efficiently 
infer all the missing ones. Note that this performance is not matched by the random super-
vision scenario, even at 80% . However, in the random supervision scenario, in contrast to 

Table 2   Comparison of Splice 
+ using the structural distance 
( d

s
 ) against the optimized hybrid 

distance ( db
h
 ) on ���� and ����

Bold font highlights the best performing distance measure

CE Distance Random supervision Early supervision

5% 10% 1 2

���� d
s

0.62 0.70 0.56 0.69
d
b

h
0.67 0.77 0.70 0.76

���� d
s

0.57 0.64 0.67 0.71
d
b

h
0.58 0.69 0.73 0.75

Fig. 7   Structure learning using OLED on ���� (left) and ���� (right) as supervision increases. In the first 
scenario, supervision arrives uniformly at random (top), while in the second one is provided at the begin-
ning of the training sequence (bottom)
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the early supervision one, some unlabelled data arrive before all the labelled data have 
been collected, which leads to mistakes.

As expected, the improved labelling accuracy of Splice + comes with a cost in runt-
ime performance over Splice. Recall that Splice + is slower than Splice because it needs to 
update the trees and select features for each micro-batch. However, the computational pen-
alty is still tolerable since it is typically below 25 seconds. Full runtime results are included 
in the online Appendix.8

Similar to the task of human activity recognition, in Table 3, we present the F 1-score of 
Splice + using the default, optimized hybrid distance ( db

h
 ), as presented in Fig. 8, against 

the simpler structural distance ( ds ). The results confirm the improved performance of the 
informed hybrid distance. In particular, the proposed distance led to 6% and 5% improve-
ment in F 1-score on average for the random and early supervision scenarios respectively.

In Table 4, we present the change in F 1-score as the batch size increases. Splice + is 
more robust than Splice, and this is more apparent in the maritime dataset, as opposed to 
the activity recognition one, the results for which are presented in the online Appendix. 
On �������� , when 1 supervised sequence is provided, the F 1-score of Splice varies from 
0.02 to 0.1, while that of Splice + varies only 0.01. For 2 supervised sequences the varia-
tion is even greater, since the F 1-score of Splice varies from 0.03–0.18, in contrast to that 

Fig. 8   F1-score of supervision completion on �������� (left) and ���������� (right) as supervision 
increases. In the first scenario, supervision arrives uniformly at random (top), while in the second one, 
supervision is provided only at the beginning of the training sequence (bottom)

8  https://​users.​iit.​demok​ritos.​gr/​~vagmcs/​pub/​splice_​plus/​appen​dix.​pdf.

https://users.iit.demokritos.gr/%7evagmcs/pub/splice_plus/appendix.pdf
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of Splice + where the variation remains 0.01. The same holds for the ���������� CE, 
where for 1 supervised sequence, Splice varies from 0.08–0.15, while Splice + varies only 
0.01.

In Fig.  9, we present the structure learning results of Splice-OLED against Splice +-
OLED, and OLED alone using the incomplete dataset (OLED alone uses only the labelled 
examples). Splice +-OLED clearly outperforms both Splice-OLED and OLED alone by a 
large margin, which indicates the usefulness of the proposed approach.

4.3.3 � Fleet management

For the fleet management dataset, the F 1-score of supervision completion on both sce-
narios for the ������������������ and ���������������� CEs is depicted in Fig. 10. 
The results appear to be consistent with the previous tasks, since Splice + yields the best 
overall performance. However, in this dataset the difference with Splice is smaller, due 
to the fact that fleet management does not have irrelevant or noisy features. Thus, the dif-
ference in performance is only due to the graph synopsis, that yields improved solutions, 
instead of the hybrid distance that accounts for feature significance. ILASP-NB, on the 
other hand, achieves comparable performance only in the random supervision scenario for 
������������������.

The absolute difference in runtime cost between Splice + and Splice is similar to that 
observed in the activity recognition dataset (see online Appendix for a full comparison). 
Briefly, the computational penalty is typically below 20 seconds, due to the updates of the 

Table 3   Comparison of Splice + 
on �������� and ���������� 
using the simple structural 
distance ( d

s
 ) and the hybrid 

distance ( db
h
)

Bold font highlights the best performing distance measure

CE Distance Random supervi-
sion

Early supervi-
sion

5% 10% 1 2

���������� d
s

0.59 0.70 0.69 0.79
d
b

h
0.62 0.75 0.74 0.81

�������� d
s

0.47 0.63 0.78 0.90
d
b

h
0.56 0.69 0.95 0.96

Table 4   F1-score of �������� , 
���������� for varying batch 
sizes: Splice/Splice +

CE Batch size Number of supervised sequences

1 2 4

�������� 10 0.63/0.96 0.88/0.97 0.92/0.97
25 0.69/0.96 0.85/0.96 0.91/0.97
50 0.71/0.96 0.88/0.96 0.91/0.97

100 0.61/0.95 0.70/0.96 0.75/0.97
���������� 10 0.63/0.74 0.77/0.86 0.87/0.93

25 0.58/0.74 0.72//0.86 0.84/0.90
50 0.56/0.74 0.75/0.86 0.83/0.90

100 0.48/0.75 0.61/0.81 0.83/0.92
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trees and feature selection. ILASP-NB, on the other hand, is 3 times slower than Splice + , 
since it requires all the data to be available at once.

Finally, in Fig.  11, we present the structure learning results of Splice-OLED against 
Splice +-OLED, and OLED alone using the incomplete dataset (OLED alone uses only the 
labelled examples). Splice +-OLED outperforms Splice-OLED in only one of the four sub-
figures, namely ������������������ under random supervision. This is in agreement 
with the supervision completion results, shown in Fig. 10.

4.4 � Discussion

The experimental results on the three real-life datasets demonstrated that our proposed 
method can effectively learn Event Calculus theories even in the presence of irrelevant 
or noisy features. In such cases, it outperforms its predecessor (Splice), while in the sim-
pler cases, such as in the fleet management dataset, it yields at least as good performance. 
Moreover, the findings suggest that the graph synopsis and the temporal connection of the 
unlabelled examples enable Splice + to achieve robust labelling regardless of the batch size.

In the presence of noisy or irrelevant features, each component of the proposed hybrid 
distance function contributes to an improved overall performance. The feature selec-
tion component works well when the labels are sufficient to select a good subset of logi-
cal atoms. However, in a semi-supervised learning task, this is not always the case, as in 

Fig. 9   Structure learning on �������� (left) and ���������� (right) as supervision increases. In the first 
scenario, supervision arrives uniformly at random (top), while in the second one is provided at the begin-
ning of the training sequence (bottom)
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the case of the maritime monitoring dataset, where no gain is observed. In contrast, we 
observe on average 2% and 4% improvement for random and early supervision respectively 
in the activity recognition dataset. On the other hand, the mass-based dissimilarity seems 
to improve F 1-score by 4% and 5% on average in activity recognition and by 5% and 8% 
on maritime monitoring (see online Appendix). By combining both supervised and unsu-
pervised metric learning, Splice + manages to refine the distance measurements when the 
provided CE examples are noisy, similar to negative examples, or have multiple, alterna-
tive definitions (Tables 2 and 3). Splice fails to infer the labels correctly in these cases, 
because it relies solely on the structural distance of Eq. (1) without considering the relative 
importance of different features (logical atoms). Hence, Splice performs well only on fleet 
management and ���� CE (see Fig. 5 right and 10), since the examples are more distinct 
compared to their negative counterparts and have a single definition. It is worth noting that 
ILASP-NB also performs better on ���� (random supervision) and ������������������ 
CEs because they can be learned using fewer examples.

In early supervision scenarios, where labels are provided in a contiguous sequence of 
events, the disparity in performance between Splice and Splice + becomes more notice-
able (Fig. 8 bottom). This observation reinforces the belief that Splice underperform when 
labeled examples differ significantly from their unlabelled counterparts due to the pres-
ence of irrelevant features in other parts of the sequence. As expected, this issue is less 

Fig. 10   F1-score of supervision completion on ������������������ (left) and ���������������� 
(right) as supervision increases. In the first scenario, supervision arrives uniformly at random (top), while in 
the second one is provided only at the beginning of the training sequence (bottom)
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prominent when labels are uniformly sampled from the entire training sequence (Fig. 8 
top).

The experimental results over different batch sizes confirm that temporal label prop-
agation (see Sect.  3.3) render the predictive accuracy of Splice + invariant to batch size 
(see Table 4). The effect is stronger when the labelled examples are fewer (1 supervised 
sequence over 4 supervised sequences), which indicates the importance of connecting the 
unlabelled examples between micro-batches. Therefore, the accuracy of Splice + does not 
fall as the dataset size increases. However, larger micro-batch size hurts runtime perfor-
mance, since the number of unlabelled examples per micro-batch is higher, increasing the 
runtime complexity of label propagation (Michelioudakis et al., 2019). Note that size does 
not affect the time for updating the Half-Space trees, since the update algorithm is linear 
to the number of examples (see Algorithm 3). The LMFS optimization also remains unaf-
fected (assuming labelled examples are sparse), since it only considers labelled examples.

In contrast to typical supervised learning, semi-supervised performance does not always 
improve when the dataset size increases, since the provided labelled examples may not 
be representative of the entire data distribution. In fact, it has been shown that under cer-
tain conditions, increasing the number of unlabelled examples does increase predictive 
accuracy (Singh et al., 2008). When it comes to runtime performance, simply increasing 
the dataset size (assuming a small batch size) should not negatively impact performance, 

Fig. 11   Structure learning on ������������������ (left) and ���������������� (right) as supervi-
sion increases. In the first scenario, supervision arrives uniformly at random (top), while in the second one, 
supervision is provided only at the beginning of the training sequence (bottom)



	 Machine Learning

1 3

unless there is a significant increase in the number of labeled examples, which has an expo-
nential effect on the runtime of Algorithm 1.

Beyond accuracy, the rules discovered using Splice + are interesting and intuitive. In the 
activity recognition dataset, using random supervision ( 5% ), Splice +-OLED often man-
ages to learns rules such as the following:

The first rule requires both persons to be inactive and close enough (less than 24 pixels), 
while having similar orientation. The second, more general, rule states that if some person 
starts walking, then the meeting is over. In the early supervision scenario (1 supervised 
sequence), the rules may be more error prone, but still very intuitive, such as the following:

In the first rule, Splice +-OLED did not manage to learn a spatial constraint, thus it may 
assume a meeting is initiated regardless of the distance between the two persons. On the 
other hand, Splice-OLED learns similar rules in some of the runs (about 30% of them), but 
in most cases it either learns more general initiation rules leading to many false positives or 
very specific termination rules yielding false negatives. There are also runs where Splice-
OLED either only learns initiation or termination rules, which indicates that the inferred 
labels are contradicting. Such cases occur also in Splice + , but they are fewer and usually 
suggest that the labelled examples in the underlying training sample are outliers.

In the maritime dataset, using either random or early supervision, Splice +-OLED usu-
ally manages to learn proper initiation rules for the ���������� CE, such as the following:

Similarly good rules are discovered in the fleet management dataset. Interestingly, Splice-
OLED usually fails to learn the second initiation rule, which is explained by the fact that 
there are more examples in the dataset in which vessels are moving at low speed rela-
tively close to each other, than examples where vessels stop moving. Therefore, given 
very few labelled examples, Splice fails to capture the important features that highlight 
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the ���������� behaviour, leading to contradicting labelling and noisy rules that OLED 
rejects during structure learning. Note that the interpretability of these rules makes it easy 
for the end-users to modify and adapt to their needs, e.g., add a missing spatial constraint, 
in contrast to more complex models that may require expert knowledge in order to tune and 
reuse the learned model.

In summary, Splice + facilitates learning better rules due to its improved distance meas-
ures, that identify useful features among noisy examples, yielding better labelling. Moreo-
ver, its labelling is not affected by the batch size, in contrast to Splice which offers no 
guarantees. Splice + can be particularly efficient in the more realistic and challenging early 
supervision setting, in the presence of noisy labels and irrelevant features. Although Splice 
+ is used to learn CE definitions in the Event Calculus, it can be applied to learn any tem-
poral domain formalised in first-order logic, as long as, the examples do not include many 
long range dependencies (densely connected group of facts) or temporal intervals (CEs 
defined over interval relationships). Long range dependencies would significantly increase 
the complexity both of the structural distance and the depth of Half-Space trees. Addition-
ally, temporal intervals necessitate numerical handling to effectively incorporate them.

Additionally, although Splice + is efficient in general, its computational performance 
can be compromised by a large increase in the number of labelled examples, since the opti-
mization presented in Algorithm 1 is NP-complete. The runtime complexity of the mass-
based dissimilarity also increases with the number of atoms in the Hebrand base, since 
trees have higher depth. Hence, in scenarios where there are limited positive examples or 
noisy and irrelevant features (logical atoms), Splice + proves to performs best. Conversely, 
when reliable labelled examples are provided and irrelevant features are minimal, Splice 
may be preferred due to its runtime efficiency. However, it is important to carefully select 
the batch size as it can impact the predictive performance of Splice.

5 � Related work

Learning composite event rules from sensory input is a challenging task that is receiv-
ing increasing attention in the literature, since it constitutes a limiting factor to most CER 
applications. Recent approaches attempt to learn propositional CE rules in the form of a 
domain-specific language from historical data (Margara et al., 2014; George et al., 2016; 
Mousheimish et al., 2017; Bruns et al., 2019). On the other hand, online structure learners, 
employ logic formalisms, such as the Event Calculus, to capture the relational dependen-
cies of complex events (Michelioudakis et al., 2016; Katzouris et al., 2016, 2018). How-
ever, these methods, either propositional or relational, assume that a fully-labelled training 
dataset is available.

Despite the plethora of semi-supervised learning (SSL) methods that have been devel-
oped for tackling the problem of missing supervision (Chapelle et  al., 2006; Zhu et  al., 
2009), to our knowledge, only variations of co-training have been adapted to Inductive 
Logic Programming (Li & Guo, 2012; Soonthornphisaj & Kijsirikul, 2004). However, co-
training is not suitable for online learning since it assumes that the training data can be sep-
arated into distinct views (Nigam & Ghani, 2000), namely disjoint feature sets that provide 
complementary information about each instance, while each view is sufficient to accurately 
predict each class. Another approach to rule learning is to learn fuzzy if-then classifica-
tion rules from partially labelled data (Klose & Kruse, 2005). Nevertheless, these meth-
ods cannot be directly used to learn first-order Event Calculus rules. Even though SSL has 
been extensively studied in static environments (Dyer & Polikar, 2012), online SSL that 
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operates on data streams remains an open challenge. SPLICE (Michelioudakis et al., 2019), 
as presented in Sect. 2.1, is a recent online approach to semi-supervised structure learning 
for CER applications. Splice employs graph-based methods (Blum & Chawla, 2001; Zhu 
et al., 2003; Zhou et al., 2003; Joachims, 2003; Wang et al., 2008, 2013) to infer the miss-
ing labels of the training examples.

Only very few online graph-based SSL methods have been proposed to date. (Delal-
leau et al., 2005) proposed an inductive algorithm that learns a labelling function using the 
graph similarity matrix constructed given a training set containing labelled and unlabelled 
data. Subsequent incoming unlabelled examples are labelled using the previously learned 
inductive function. However, new examples (labelled and unlabelled) are not incorporated 
into the learned model, and thus, the model can become outdated. (Huang et al., 2015) also 
follow an inductive approach to graph-based SSL, by updating incrementally the inverse 
of the graph Laplacian matrix, required for computing the labelling. The update is done 
using a technique that transforms the matrix inverse computation to matrix multiplications 
in order to save time. Nonetheless, this method requires all incoming data to be stored, 
leading to continuously increasing memory requirements. (Valko et al., 2010) designed a 
transductive technique that quantises the stream into a small number of clusters using an 
online k-center algorithm. Then, the harmonic solution is computed on the cluster centers. 
SPLICE follows a similar approach for caching the labelled examples, but instead of clus-
tering, it performs logical unification to group the incoming examples into concepts (bot-
tom clauses). Finally, the Temporal Label Propagation method proposed by Wagner et al. 
(2018), as presented in Sect. 2.4, stores a constant size graph synopsis of the stream and 
performs label propagation on the compressed graph.

Naturally, graph construction is an important issue of graph-based SSL methods, 
and thus, the labelling solution is sensitive to the distance measure used to interconnect 
examples. Since we are interesting in learning CE rules from interpretations (Blockeel 
et  al., 1999), a distance measure for comparing first-order atoms is desirable. Although 
various measures exist for first-order logic, either structural (Bisson, 1992b, a; Emde & 
Wettschereck, 1996; Nienhuys-Cheng, 1997; Bohnebeck et  al., 1998; Ramon & Bruy-
nooghe, 1998; Mavroeidis & Flach, 2003) or semantic (Sebag & Schoenauer, 1993; Sebag, 
1997), none of these handle irrelevant or noisy features and thus their credibility may be 
compromised.

At the same time, numerous methods have been proposed to cope with such noisy and 
irrelevant features, stemming from feature selection (Guyon et  al., 2006; Chandrashekar 
& Sahin, 2014) or metric learning (Kulis, 2013; Wang & Sun, 2015) techniques. Filter 
methods to feature selection are a popular candidate since they are fast to compute. Exist-
ing approaches are based on mutual information (Vergara & Estévez, 2014; Brown, 2009), 
consistency measures (Arauzo-Azofra et al., 2008), constraint scores (Zhang et al., 2008; 
Benabdeslem & Hindawi, 2014), and rough sets (Pawlak et al., 1995; Modrzejewski, 1993). 
These methods usually provide a ranking of the features according to a specific criterion. 
Thus, the user needs to select a subset from the ranked list, e.g. the top k features.

Metric learning, on the other hand, aims to learn a distance measure on the feature 
space, so that some given pairs of data points are pulled as close as possible, while others 
are pushed far apart. There are supervised learning approaches, based on Mahalanobis dis-
tance learning (Goldberger et al., 2004), and unsupervised ones, depending on linear recon-
struction (Roweis & Saul, 2000; Tenenbaum et al., 2000). Mass-based dissimilarity (Aryal 
et al., 2014) is also a form of unsupervised metric learning. In contrast to supervised meth-
ods ( Ting et al. (2019), Section 8), the mass-based approach derives dissimilarity directly 
from data by estimating the probability mass of the region covering the given data points, 
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without any class information. Only a few attempts exist to combine metric learning and 
graph-based SSL (Wang & Zhang, 2008; Okada & Nishida, 2010; Pourdamghani et  al., 
2012), and none of these approaches combines supervised metric learning with mass-based 
dissimilarity, as in Splice + , in order to exploit both labelled and unlabelled data. Moreover, 
to our knowledge, no such methods have been applied to logical interpretations.

6 � Conclusions and future work

We presented Splice + , a novel approach to online structure learning of CE rules from 
partially-supervised training sequences. Similar to its predecessor (Splice), the new 
method infers the missing labels continuously as the data arrive, and passes them on to an 
online supervised structure learner that constructs CE rules. In contrast to Splice, Splice 
+ employs a hybrid distance measure combining a structural distance optimised for kNN 
classification through feature selection, and a data-driven measure based on mass estima-
tion. The combined measure exploits the labelled data for supervised metric learning and 
the unlabelled data for estimating the distribution of examples. Finally, Splice + constructs 
a temporal graph and maintains a synopsis from the data stream to achieve robust labelling.

Experimental results using benchmark real-life data from human activity recognition, 
maritime monitoring, and fleet management, showed that Splice + outperforms its prede-
cessor (Splice) in terms of completing the missing labels and improving the predictive 
accuracy of the underlying structure learner. Moreover, it seems particularly effective when 
supervision is provided only at the beginning of the stream. Finally, the comparison to a 
batch learning system combining ILASP and Naive Bayes, to perform a form of co-train-
ing, resulted in inferior results and much higher computational requirements.

Further extensions of the proposed method are being investigated, including an active 
learning component that will enable Splice + to enhance its predictions in the presence of 
noisy labels or concept drift. Additionally, we are considering a distributed implementation 
that will enhance the scalability of the method.
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