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ABSTRACT
Machine learning is regularly used to interpret and analyze
information from large and complex datasets originating
from numerous fields. In Bioinformatics, the exploration of
potentially beneficial drug configurations for tumor treat-
ments via simulations requires multiple processing units
to be used in parallel and a considerable amount of time
to be completed. In this paper, we apply a state-of-the-art
model exploration workflow for the characterization of a
new drug configuration parameter space, using a redesigned
simulator. Moreover, we incorporate different clustering and
optimization approaches and compare their performance in
in-silico simulation trials on high-performance computing
infrastructure, with respect to time and resource efficiency.
The overall goal is to discover regions in this parameter space
that can lead to more viable treatments in reasonable time,
and thus guide the related research towards more focused
and effective real-world trials.
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1 INTRODUCTION
Cancer disease is one of the leading causes of death globally,
being responsible for approximately 10 million in 2020 ac-
cording to the World Health Organization.1 The alarming
statistics have made the discovery of promising treatments a
top priority for the medical and biological research commu-
nity [15]. However, the dynamic nature and the mortality
of the disease make clinical experiments difficult, since the
recovery time window is often narrow and any possible er-
ror or miscalculation may have devastating results to the
patient’s health. Computational biology has assisted the re-
searchers in drug discovery [3, 11] by providing models that
1https://www.who.int/news-room/fact-sheets/detail/cancer
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attempt to describe the behavior of tumor cells in the hu-
man organism. These models allow practitioners to study via
simulations the effectiveness of various tumor treatments
in-silico, without putting the human lives on the line.

Although such simulations are detailed and insightful, in
most cases they are computationally expensive, hindering
the researchers from exhaustively examining the effect of
every possible treatment configuration. To that end, Com-
putational Intelligence and Machine Learning methods can
be used to reduce the required number of simulations in an
informed manner, and to provide accurate predictions about
the effectiveness of treatments. In particular, Ozik et al. [19]
presented a workflow that aims to discover the characteris-
tics of promising drug treatments, by identifying the value
ranges of the drug-related parameters that can induce desir-
able effects, i.e. that reduce tumor growth and its resistance
to the drug. This workflow consists of two parts. The first
one comprises an Active Learning (AL) algorithm [23] that
aims to identify the interesting regions of the treatments
parameter space, by iteratively evaluating sample points and
training a classifier. The second part consists of a Genetic
Algorithm (GA) for discovering optimized treatment con-
figurations. This workflow provides a valuable tool in the
researchers’ arsenal and enables them to perform targeted
and promising real-world trials.

In this paper, we apply a similar model exploration work-
flow combined with a different simulator. Specifically, we
examine the effect of a signal molecule that can induce death
in tumor cells in a similar manner to tumor treatments, called
Tumor Necrosis Factor (TNF) [7]. TNF is a critical cytokine
that binds to cell receptors and activates signalling path-
ways to cell necrosis, restraining in this way the growth
and spread of tumor cells. We conduct experiments utilizing
PhysiBoSSv2.0,2 an add-on that expands upon the PhysiCell
cell simulator [10]. PhysiBoSSv2.0 introduces an agent-based
multi-scale model for tumor cell growth used to examine the
impacts of given drug configurations [2]. Our overall goal is
to sample subsets of the TNF related parameter values that
resemble different treatment configurations and simulate the
effect of each treatment on high-performance computing
infrastructures so that to discover the most effective ones.
In particular, the evaluated samples are used to train a

classifier, which then indicates the most uncertain regions
that in turn determine the samples to be evaluated in the
following iterations. These regions, however, presumably
contain an infinite number of points. In order to guide the
exploration, the uncertain points are clustered according
to their similarity, e.g. using the 𝐾-Means algorithm, and
only a few representatives are finally evaluated via simula-
tions. Since the requirements for computational resources to

2https://github.com/bsc-life/PhysiBoSSv2

sufficiently explore alternative treatments are quite high, it
is important to devise faster and less resource-demanding
alternatives for such approaches, nevertheless without com-
promising overall performance. Such modifications can be
proven really valuable in even more complex settings, such
as when exploring the synergistic effects of multiple drugs
being administered simultaneously to the patient [17].
The clustering component of the sampling process plays

an important role in the number of the required simula-
tions and the results produced. Based on their design prin-
ciples, different methods may lead to results with quite no-
ticeable differences. Moreover, most require user-defined
hyper-parameters in order to operate, which may be diffi-
cult for non-experts to determine in advance. To this end,
we examine the effect of additional clustering methods, i.e.,
DBSCAN and BIRCH, to the effectiveness of the sampling
process in the workflow, and compare their performance.
Furthermore, we also examine an additional optimization
method, that is Simulated Annealing, for the discovery of
the most efficient treatments, which is expected to be more
resource efficient. Our experiments demonstrate that there
can be differences in the performance of each clustering al-
gorithm and optimization method. Also, results indicate the
existence of a trade-off between the amount of simulations
performed and the stability of the produced solutions, both
during the characterization of the treatment configuration
space and the discovery of the most effective treatments.
The remainder of this paper is structured as follows. In

Section 2 we present the related work and the details of
the parameter space exploration workflow. Then, in Sec-
tion 3 we discuss the additional clustering and optimization
alternatives that we evaluate. In Section 4 we present the
experimental results of the treatment configurations space
exploration, while in Section 5 we summarize the work and
propose further research directions.

2 BACKGROUND & RELATEDWORK
ML methods are widely used in Computational Biology and
Bioinformatics to discover behavioral patterns of biologi-
cal systems. The predictive models generated by ML give
insights to the functional relationships of the systems and
provide accurate statistical predictions in a range of bio-
logical applications [4, 8]. For instance, Błażewicz et al. [5]
proposed a time-effective method to discover low energy
protein structures using a heuristic optimization method.
The authors combine simplified protein structure prediction
models and the Tabu Search algorithm in order to discover
the native structure of the protein. An essential feature of
the Tabu Search algorithm is the exclusion of possible candi-
date solutions from being evaluated as they are not expected
to be of interest. In a similar manner, the AL algorithm in
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our workflow identifies non-interesting regions of the space
and focuses the exploration to more interesting ones. The
non-interesting regions are then eliminated from the best
treatment search by the GA during the optimization part.

GAs have also been combined with clustering techniques
in Active Learningworkflows for the classification of biomed-
ical images. [13] adopts such an approach combined with
self-organizing maps, to reduce the amount of manual la-
bor required for annotating and analyzing cancer patient
screening images. Interactivity allows human supervision
and intervention, but this is only required in a smaller scale.
Unsupervised learning helps to detect uncertain regions and
ask for more targeted input by experts, while automatically
expanding learned classification rules to known cases.
Mohamed et al. [16] incorporate AL for guiding the se-

lection of protein pairs for future experimentation in order
to accelerate accurate predictions of the human protein in-
teractome. Random selection for uncertainty sampling with
random forests is compared against density-based sampling
using 𝐾-Means. The results suggest that AL manages to ac-
celerate the discovery of interacting protein pairs, even in
datasets where the ratio of interacting pairs is very low.

The work of [20] presents an overview of AL methods that
are used to detect potentially promising regions of drug con-
figurations that maximize the desired treatment effects, both
in prospective and retrospective. The behavior of particular
unsupervised learning methods in such domains however,
has not received enough attention so far.
Ozik et al. [19] presented an approach for assisting in

the tumor treatment discovery. The method consists of two
parts: in the first one, an AL algorithm is used in order to
divide the treatment parameter space into promising and
non-promising regions, while in the second part, a GA is
used in order to discover the most promising treatment con-
figuration and to validate the results of the parameter space
characterization of the first part. The AL algorithm utilizes a
Random Forest classifier to divide the parameter space into
viable and non-viable areas, and a 𝐾-Means algorithm to
cluster the points in the most uncertain regions, i.e. that is
not definite if they are viable or not, to focus the search in
the subsequent exploration steps. An area is considered to
be viable if it includes treatments that manage to reduce the
count of the alive tumor cells below a set threshold by the
end of the simulation. Although this workflow yields promis-
ing results, it suffers from various limitations regarding its
performance. In the AL part, and in particular during the
sampling process, 𝐾-Means fails to identify clusters of arbi-
trary shape and to eliminate noise in the candidate points
set. It is also unable to dynamically adjust the number of
clusters to the spatial distribution of each different candidate
set. These restrictions lead to an unstable sampling process,
as outlying points are taken into account in the formation

of the clusters and, in many cases, larger clusters are bro-
ken down to smaller ones (or vice versa) in order to reach
a user-defined number, which is a required configuration
parameter. Such restrictions might degrade the sampling
process and often result in the execution of redundant or
less informative simulations. To overcome these shortcom-
ings, we incorporate BIRCH and DBSCAN as alternative
clustering techniques for the first part of the workflow, and
also Simulated Annealing (SA) for the optimization in the
second part. BIRCH and DBSCAN are more noise-tolerant
than 𝐾-Means, thus are expected to designate more suitable
points for evaluation. Moreover, the SA operates on a single
candidate point, instead of a larger population, as the GA
does, thus requiring less simulations to be performed.

3 WORKFLOW FOR TUMOR
TREATMENT EXPLORATION

In this section, we present the tumor treatment exploration
workflow that we incorporate, and we introduce the alterna-
tive clustering and optimization methods for the exploration
and the optimized treatment discovery, respectively.
The various steps of our approach are illustrated in Fig-

ure 1. To begin, each three dimensional point of the parame-
ter space corresponds to a specific treatment configuration,
indicating the values for TNF duration and frequency of ad-
ministration, and the TNF concentration. Our goal is to find
the values for these three parameters that lead to the most
effective treatments. Starting from a number of randomly
selected points of the unexplored space, we evaluate them
by configuring the simulator with the respective parame-
ter values and then performing the in-silico trials on the
HPC. According to the obtained results, i.e. the number of
tumor cells that are still alive at the end of the simulation, we
train a Random Forest (RF) classifier, which is then queried
to obtain the labels of a grid of unexplored points—either
interesting or non-interesting, according to the treatment
effectiveness. Next, the ones for which the RF’s decisions are
the most uncertain, are clustered to determine only a subset
in order to proceed with their evaluation in the following
iteration of the algorithm. This point selection process sig-
nificantly reduces the number of required simulations—as
we only evaluate the centroids of each cluster instead of the
whole set—and ensures the spatial diversity of the points
that are to be evaluated next. Then, the simulations take
place and their results are used to augment the training set
of the RF. Next, the RF is retrained using the updated set of
evaluated points, leading to a more refined characterization
of the parameter space as the execution progresses, up to a
user-defined number of iterations, which is the termination
criterion for the first phase of the workflow.
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Figure 1: Overview of the examined workflow.

Continuing with the optimization phase (bottom of Fig-
ure 1, marked with dashed arrows), an evolutionary algo-
rithm is used, either GA or SA, in order to discover the most
promising treatments, ones that lead to the lowest tumor cell
counts. For the initialization of the evolutionary algorithms,
we use the best points discovered so far by the AL part. The
selected points are combined to generate new ones following
the respective procedure according to the selected evolution-
ary algorithm, and the new points are evaluated on the HPC.
This repeats up to a user-defined number of iterations.

3.1 Clustering Algorithms
The two key components of the AL part of the workflow are
the RF classifier and the clustering algorithm that is used to
reduce the number of candidate points for evaluation in the
HPC. Here, we discuss different clustering algorithms which
can help our workflow to explore the treatment configura-
tions space faster. Such algorithms are used in a plethora of
fields for the identification of similarities between different
data instances. The three main categories of clustering algo-
rithms are partitioning, hierarchical and density-based [1].
The partitioning type aims to divide the data instances space

into 𝑘 clusters. Finding the optimal 𝑘 parameter is crucial
and requires prior knowledge regarding the true distribution
of the instances. This knowledge is usually not available in
most applications and especially in our problem, where the
candidate points may vary between iterations. Hierarchical
algorithms on the other hand focus on the space decom-
position. This is represented as a tree that splits the space
into smaller clusters until a termination criterion is reached.
Finally, density-based algorithms cluster the data based on
their density in the space. Clusters are considered to be sets
of points of high density separated by lower density regions.
For our purposes, we focus on a representative algorithm
from each of these categories, in particular the 𝐾-Means,
BIRCH, and DBSCAN algorithms [24].

𝐾-Means. One of the most widely used clustering methods
is the 𝐾-Means algorithm [14]. In brief, 𝐾-Means consists of
three steps. First, 𝐾 points are selected from the dataset to
form the initial centroids. Then, the remaining points are as-
signed to the nearest centroid, and each centroid is redefined
as the center of mass of all the points assigned to that cluster.
These two steps are repeated until convergence is reached.
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The 𝐾-Means algorithm is simple and fast, and was utilized
by [19] for the AL part. However, it entails limitations that
may lead to poor accuracy. First, the number of clusters is
difficult to determine beforehand, as in most cases there is
no prior knowledge regarding the spatial distribution of the
dataset. Second, clustering may be affected by noise, as out-
liers are considered for the calculation of the centroids. Also,
it mainly identifies spherical clusters of similar sizes, while
it fails to find ones of arbitrary sizes and densities.

DBSCAN. Ester et al. [9] introduced the DBSCAN algo-
rithm, a density-based clustering approach designed to iden-
tify clusters of arbitrary shapes. DBSCAN relies on the Eps
and MinPts parameters. Eps defines the maximum distance
between two points to be considered as neighbors. MinsPts
is the minimum number of points required to be in the neigh-
borhood of a point 𝑝 in order for the point 𝑝 to be considered
a core point of a cluster. According to DBSCAN, points can
be divided into three categories, the core, border, and noisy
points. Core points refer to representative points of the clus-
ter, while border points are the ones on the edges of the
cluster. Every other one is considered as an outlying point.
The algorithm arbitrarily picks a point 𝑝 and calculates the
number of points in its Eps neighborhood. If the number of
neighboring points is greater than MinPts, then 𝑝 is the core
point and a cluster is formed. If 𝑝 is a border point, then
DBSCAN visits the next point in the dataset. The process is
repeated until all points are examined. DBSCAN is a com-
monly used algorithm due to its ability to identify clusters
of arbitrary shapes and sizes and its robustness to noise.

BIRCH. BIRCH is a hierarchical clustering algorithm intro-
duced by Zhang et al. [25] to handle large datasets efficiently.
Its efficiency is achieved by creating a summary of the dataset
and then processing this summary, instead of clustering the
original dataset as a whole. BIRCH is based on the concepts
of the Clustering Feature (CF) vector and the CF tree.

Given 𝑁 𝑑-dimensional data points in a cluster 𝑥𝑖 , where
𝑖 = 1, 2, . . . , 𝑁 , the clustering feature vector (CF) of the cluster
is defined as a triple𝐶𝐹 = {𝑁, 𝐿𝑆, 𝑆𝑆}, where𝑁 is the number
of data points in the cluster, 𝐿𝑆 is the linear sum of the 𝑁
data points and 𝑆𝑆 is the square sum of them. A CF Tree is a
height-balanced tree, which acts as a compact representation
of the original dataset. A leaf node in the tree contains at
most 𝐿 entries of CFs and two pointers linking the node to
the previous and the next leaf node. Internal nodes contain
entries of the form [𝑝,𝐶𝐹𝑝], where 𝑝 is a pointer to a child
node and𝐶𝐹𝑝 is the sum of all the CFs in the child node. Each
CF Tree requires two parameters, the branching factor 𝐵 and
the threshold 𝑇 . Each internal node of the tree can contain
at most 𝐵 entries and the diameter of each leaf entry has to
be less than 𝑇 . The algorithm scans the data and creates a
CF Tree by iteratively selecting data samples. At each step, a

new data sample is selected and the nearest leaf node sub-
cluster in the existing CF tree is obtained. If the distance
between the centroid of the closest sub-cluster and the new
sample is less than the threshold𝑇 , then the sample is added
to the sub-cluster and the properties of the leaf node and
its parent nodes are updated. Otherwise, a new sub-cluster
is created and added to the CF Tree. In case the addition
of the new sub-cluster breaks the branch factor condition,
then the parent node is split. In this way, outlying points
do not distort the existing clusters and can be isolated into
smaller clusters consisting only from close noisy points. In
our approach, we consider the leaf nodes of the CF Tree
as the final clusters. These clusters can be categorized to
ones containing informative points and those containing
outlying points. BIRCH is a fast algorithm, which efficiently
clusters large datasets, it does not require specifying the
number of clusters and it can also detect outlying points.
Table 1 summarizes the characteristics and limitations of
each clustering method under examination.

3.2 Searching for Optimized Treatments
Heuristic search methods, such as the GA, have been de-
veloped in order to solve optimization problems that are
difficult or even impossible to be reduced to an analytical
form and thus solved by exact numerical algorithms. Such
methods require little or no prior knowledge of the problem’s
domain and aim at the discovery of the global minimum (or
maximum) of an objective function. Although they cannot
provide guarantees for finding the true globally optimal solu-
tion, they can discover many “good” solutions that are locally
optimal. Application examples come from a wide variety of
fields, e.g. bioinformatics, power systems, etc. [18].
In addition to the GA incorporated by [19], we also ex-

amine the application of the Simulated Annealing (SA) opti-
mization technique [6, 12] for discovering the best treatment
configurations. SA is a probabilistic optimization method
that mimics the process of metal annealing, in which a metal
is heated and cooled slowly in order to solidify its crystals
and reach an optimal state of minimum energy. The basic
elements of the SA method are the set of possible points
𝑆 , an energy function 𝐸 : 𝑆 ↦→ R (objective function), an
initial temperature (𝑇𝑜 ), a minimum temperature (𝑇min), the
temperature at 𝑘th level 𝑇𝑘 , the number of iterations in each
temperature level 𝑁 and the cooling schedule. The SA algo-
rithm consists of two nested loops. The algorithm starts from
an initial point (current solution 𝑠) and evaluates its “energy”.
In the inner loop, the set of neighbors of the current point is
generated, a random neighbor 𝑛 is selected and, in turn, its
“energy” is evaluated. The selected neighbor is accepted as
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Table 1: Examined Clustering Methods Overview

Method Characteristics Limitations

𝐾-Means Clusters of similar shape and size Difficult definition of optimal 𝐾
Clustering data of varying sizes and density

DBSCAN Clusters of varying size and shape, Noise detection Parameter sensitive
Varying density clusters

BIRCH Time and memory efficient, Noise detection Not scalable for high dimensional data

the new solution 𝑠 with probability:

𝑃𝑎𝑐𝑐𝑒𝑝𝑡 (𝑛) =
{
1, 𝐸 (𝑛) ≤ 𝐸 (𝑠)
𝑒𝑥𝑝

(
− Δ𝐸

𝑘𝑇𝑘

)
𝐸 (𝑛) > 𝐸 (𝑠)

i.e. the new candidate solution is always accepted if it per-
forms better than the current solution. Otherwise, the candi-
date solution is accepted with an acceptance probability. The
acceptance probability decreases exponentially with the infe-
riority of the candidate solution. The inner loop is repeated
until 𝑁 iterations are completed (equilibrium condition). The
acceptance of inferior candidate points gives the ability to
escape from local minima and to continue the search for the
globally optimal solution. In the outer loop, the temperature
level is decreased according to the cooling schedule, until
reaching 𝑇min (cooling condition).
At high temperature levels, the SA is more tolerant to-

wards moving to inferior solutions and aims at the discovery
of a “good” neighborhood. As𝑇 decreases, smaller deteriora-
tion in energy is allowed, and focus is put into the discovery
of the globally optimal solution. If the search space is small,
SA and GA yield similar results, as both methods perform
well in the improvement of the set of parameters around an
initial solution [21]. However, the SA focuses on a single
candidate solution, while the GA maintains a population of
possible solutions. This difference makes the SA less demand-
ing in terms of computational resources when facing such
problems. We take advantage of this characteristic and apply
SA in the optimized drug treatments discovery by incorpo-
rating the knowledge we have deprived from the AL part of
the workflow, focusing only on regions already classified as
viable. In particular, we set the initial point of the SA to be
one of the most promising treatments evaluated by the AL.

4 EXPERIMENTAL RESULTS
Our implementation can be found in an online repository,
along with instructions on how to reproduce the experiments
presented in this section.3 The scikit-learn Python library4
was used for the clustering methods and the DEAP Python

3https://github.com/xarakas/spheroid-tnf-v2-emews
4https://github.com/scikit-learn/scikit-learn

library for the GA.5 The SA is based on a custom implementa-
tion. All experiments were performed on the Mare Nostrum
4 (MN4) HPC infrastructure provided by the Barcelona Su-
percomputing Centre.6 The hyperparameter configuration
of each method was obtained after performing smaller scale
experimental runs. First, we present the results of the clus-
tering methods for the sampling process of the AL part, and
then we compare the performance of the GA against the SA
for discovering the most promising treatments.

4.1 Performance of different clustering
methods in the active learning

In the original approach of [19], 𝐾-Means clustering was
applied for the AL part. The number of clusters (𝑘) was set to
20. Thus, to obtain a baseline, we examine the performance
of 𝐾-Means variants with 𝑘 equal to 20 and 50. We refer
to the aforementioned configurations as KMEANS_20 and
KMEANS_50, respectively. Moreover, we apply a 𝐾-Means
clustering with 𝑘 = 500, referred to as KMEANS_500, which
acts as a benchmark and allows us to compare the perfor-
mance of the clustering methods throughout the experimen-
tal process with that of an exhaustive method. For the evalu-
ation purposes, the parameters of DBSCAN were configured
to 𝐸𝑝𝑠 = 0.025 and 𝑀𝑖𝑛𝑃𝑡𝑠 = 20 and the parameters of
BIRCH with branching factor 𝐵 = 100 and distance thresh-
old𝑇 = 0.1, as such values were shown to be a good selection
from smaller scale trials. We define the effectiveness of each
treatment configuration as follows:

Tumor Cell Survival Rate =
Final Tumor Cell Count
Initial Tumor Cell Count

i.e., as the ratio of the count of alive tumor cells after treat-
ment to the count of the initial alive tumor cells, for a simu-
lation duration of 24 hours. This metric reflects the number
of the final alive cells as a percentage of the initial alive cells
before the application of the treatment. Viable treatments
are considered those that achieve an effectiveness score of
less than 0.3. For each experiment, the AL part was run for
20 iterations. An exhaustive sweep search of the parameter
5https://github.com/DEAP/deap
6https://www.bsc.es/marenostrum/marenostrum

https://github.com/xarakas/spheroid-tnf-v2-emews
https://github.com/scikit-learn/scikit-learn
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space was also performed as a second benchmark, in order to
compare the performance of the newly incorporated meth-
ods. The sweep search evaluates a sparser grid of points,
uniformly distributed in the search space. However, points
lying between consecutive ones on the uniform grid are not
evaluated, and thus some interesting ones might be skipped.
To measure the performance of the clustering methods

we use two metrics. These are (a) the number of uncertain
points and (b) the total simulations performed until the ex-
ecution terminates. Experiments were repeated five times
using various random seeds for each method and configura-
tion, allowing us to simulate the randomness of the process,
while still being able to compare the methods in similar ex-
perimental conditions by calculating average result values.
For the initialization of the RF classifier, 100 points were
randomly selected for the first evaluation. The results for
these points are used to compose the initial training set of
the classifier but these simulations are not counted in the re-
ported values. For each random seed, the initial set of points
is identical for every clustering method under examination.

The set of themost uncertain points in each iteration of the
AL part of the workflow defines the classification boundary
of the classifier. Thus, their number can be used as a metric
for monitoring performance, since it provides an estimate of
the certainty of the classifier regarding the characterization
of the parameter space. Consider the set of all treatment con-
figurations X, the classes {0, 1} representing the non-viable
and viable treatments respectively, and 𝑃𝑟 (𝑖, 𝑥) the probabil-
ity assigned by the classifier for a treatment configuration
𝑥 to belong to class 𝑖 . Then, the number of uncertain points
𝑁𝑈 is computed based on the following rule:

𝑁𝑈 =
��{𝑥 ∈ X | min(𝑃𝑟 (0, 𝑥), 𝑃𝑟 (1, 𝑥)) ≥ threshold

}��
i.e. the points whose uncertainty is above a predefined thresh-
old. We chose the uncertainty threshold to be equal to 0.4.
The number of uncertain points is measured at the beginning
of each iteration. The clustering method used in the second
part of the sampling process aims at the selection of the most
representative points in the set 𝑁𝑈 . A large number of un-
certain points at the end of an experiment reveals a weaker
performance of the algorithm, as it signifies the existence
of large ambiguous regions that cannot be classified with
relative certainty as viable or non-viable.
Figure 2 depicts the number of uncertain points per iter-

ation for each clustering method. The results suggest that,
BIRCH and KMEANS_500 achieve the lowest number of
uncertain points among the examined clustering methods.
The performance of BIRCH is comparable to that of the
benchmark KMEANS_500 while both are superior to the
rest of the examined clustering methods. Moreover, DB-
SCAN and KMEANS_50 converge to similar numbers of
uncertain points within the experimental time frame, with

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Number of Iterations

20000

40000

60000

80000

100000

120000

Nu
m

be
r o

f P
oi

nt
s o

ve
r u

nc
er

ta
in

ty
 th

re
sh

ol
d

BIRCH
DBSCAN
KMEANS_20
KMEANS_50
KMEANS_500

Figure 2: Number of uncertain points per iteration.

KMEANS_20 performing closely to the two other methods.
Moreover, we note that BIRCH and KMEANS_500 perfor-
mance is stable across the different experimental runs with-
out any large variations as iterations progress.
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Figure 3: Total simulations performed per clustering
method (y-axis in log-scale).

As we stressed earlier, the PhysiBoSSv2.0 simulations used
to estimate the effectiveness of tumor treatments are time-
consuming and require multiple CPUs for their execution.
Thus, the resource-effectiveness of the examined methods
is evaluated by counting the total number of simulations
performed. This number can also be considered a good in-
dicator of the time performance of each approach. Results
are depicted in Figure 3. We observe that although BIRCH
yields comparable results to the benchmark KMEANS_500,
it requires significantly less simulations. In particular, the
benchmark required 10, 000 simulations and the BIRCH algo-
rithm required only 982 on average, yielding approximately
a 90% decrease. It is worth noting that DBSCAN required the
fewest simulations from the examined methods, however
it is not shown to be equally stable across the experiment
repetitions as the increased variance in the results indicates.
In particular, DBSCAN required only 223 simulations on av-
erage, while KMEANS_50 required 1000, and KMEANS_20
even fewer (400).
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Figure 4: Simulations performed per iteration (y-axis
in log-scale).

Figure 4 shows the number of simulations performed
across the iterations of the AL part. In each iteration, a point
from each resulting cluster is selected, and simulations are
conducted for all selected points. Hence, the number of sim-
ulations required in each iteration is equal to the number
of clusters identified by each clustering method. Although
KMEANS_50 and BIRCH identify similar numbers of clus-
ters, their performance differs substantially as illustrated in
Figure 2. This is because the incorporation of outlying points
into the clusters degrades the results of the clustering pro-
cess of KMEANS_50, leading to the identification of distorted
clusters for the candidate points. On the contrary, BIRCH
recognizes outlying points and isolates them into smaller
sub-clusters, thus keeping the ones that consist either of in-
formative points that play an important role in the definition
of the classification boundary, or of outlying points. Here, we
can also observe increased volatility in the resulting clusters
identified by DBSCAN, which reveals its high sensitivity to
hyperparameters’ values selection and to the density of the
distribution of the candidate points.

Figure 5 provides a visual representation of the parameter
space characterization for each clustering method used in the
experiments, initiated with the same random seed for each
method. The figure also includes results from the uninformed
sweep search, that predetermines a relatively sparse number
of points, and evaluates them exhaustively. We observe that
all methods succeed in characterising the general region of
the viable treatments. In particular, BIRCH, KMEANS_20 and
KMEANS_50 achieve a space characterization that is very
similar to the one obtained by the benchmarks KMEANS_500
and Sweep Search. Moreover, the low number of uncertain
points achieved by BIRCH is evident in the visual represen-
tation of the space characterization, as BIRCH identifies an
interesting region with smoother borders than KMEANS_20
and KMEANS_50. The smoothness of the borders indicates
the certainty of the classifier regarding the boundaries of the
region. On the contrary, DBSCAN identifies a smaller space

Table 2: Results of the optimized drug treatment con-
figuration discovery and consumed resources.

Method Tumor Cell Final Tumor Simulations CPUsSurvival Rate Cell Count

GA 0.166 189 811 30
SA 0.195 223 91 5

as the interesting region, failing to capture the details of the
edges of the actual area that includes the viable treatments.

4.2 Performance of treatment optimization
As described earlier, GAs have been used in the past in order
to discover the most promising treatment configurations. In
our evaluation, the GA was configured to 30 generations,
with a population of 50 individuals, a tournament selection
with tournament size equal to 3, a uniform crossover with
crossover probability 0.75 and a mutation probability 0.5.
The alternative method examined, SA, was configured

with𝑇𝑜=100,𝑇𝑚𝑖𝑛=15 and𝑁=10. A geometrical cooling sched-
ule with a cooling factor equal to 𝑎 = 0.8 was applied, in
which at each temperature level 𝑖 the new temperature 𝑇𝑖 is
calculated as: 𝑇𝑖 = 𝑎𝑖 ·𝑇𝑜 . We examine the scenario in which
both methods are initialized using information from the AL
part using the BIRCH clustering algorithm in the sampling
process, as this can be considered to provide a better balance
between resources spent and discovered treatment efficiency.
The initial population of the GA consists of 12 individuals
(25% of the total population that the GA evaluates) found
to be the most promising by the active learning, as well as
of 38 random treatments (75% of the GA population). The
initial point of the SA is set to be the most promising one
discovered by the AL.
Table 2 presents the results of the two examined search

methods. The GA discovers a treatment that leads to 189 alive
tumor cells after administration, while the treatment discov-
ered by the SA method leads to 223 alive cells. Although GA
discovers a more efficient treatment, it requires noticeably
more resources than SA. In particular, GA and SA require 811
and 91 simulations, respectively. Hence, SA requires approx-
imately 12% of the simulations initiated by the GA, making
it less demanding in runtime, nevertheless without inducing
large losses in the quality of the final results. Moreover, the
utilization of only one candidate solution makes SA less de-
manding in core processing units, in contrast to the pool of
50 candidate treatments utilized by the GA.

4.3 Results overview
Finally, we present the combined results of both parts of the
incorporated workflow. As Figure 6 illustrates, all versions
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(a) Sweep Search (b) KMEANS_500 (c) KMEANS_20

(d) KMEANS_50 (e) DBSCAN (f) BIRCH

Figure 5: Visual representation of the viable regions of the parameter space. Subfigure (a) depicts the results of
the sweep search of the parameter space and subfigure (b) represents the results of the benchmark KMEANS_500.
Subfigures (c), (d), (e), (f) illustrate the results of each additional method examined.

(a) KMEANS_500 (b) KMEANS_20 (c) KMEANS_50 (d) BIRCH (e) DBSCAN

Figure 6: Visual representation of the results when incorporating different clustering and optimization algo-
rithms. Treatment configurations marked with ‘x’ and ‘+’ represent the optimal ones discovered by GA and SA,
respectively. The area shaded with blue represents the regions that are characterized as interesting by the AL part
of the workflow.

manage to converge to similar interesting regions. Specifi-
cally for KMEANS_20 and DBSCAN, there are some parts
of the interesting region that are missed, if we also compare
the results of the benchmark (KMEANS_500). Moreover, the
optimization methods discover effective treatment configu-
rations (yellow ‘x’ and ‘+’ marks) that indeed lie inside, or

at the border of the designated interesting areas (blue). Re-
gardless of the clustering algorithm used in the AL part, the
optimized treatment configurations that are discovered by
the GA achieve a tumor cell survival rate of less than 0.175,
while when using the SA this rate ranges between 0.209 and
0.177, that is lower than the 0.3 threshold in all cases. These



SETN 2022, September 7–9, 2022, Corfu, Greece V. Stavropoulos et al.

results may also provide a comprehensive visualization to
experts, which can be utilized in order to further guide drug
discovery research and real world trials.

5 CONCLUSIONS & FURTHERWORK
Multi-scale simulations provide a valuable tool to researchers
for various fields and applications, including the discovery of
promising tumor treatments. We applied a multi-scale sim-
ulator in order to characterize the treatment configuration
space and identify the most effective treatments, combined
with an Active Learning workflow for space exploration. We
used a new simulation model imitating the application of
the protein called Tumor Necrosis Factor (TNF) in order to
estimate the effect of tumor treatments. Moreover, we exam-
ined the performance of the effect of various well-known
clustering algorithms in the sampling process of the param-
eter space exploration, as well as the performance of the
Genetic Algorithm and Simulated Annealing methods in the
discovery of optimized drug treatment configurations. Sim-
ulation trials conducted in an HPC environment show that
the BIRCH and KMEANS_50 clustering algorithms achieve a
high quality characterization of the parameter space similar
to the one obtained by the benchmark methods. BIRCH leads
to the least number of interim uncertain points and identifies
the region of viable treatments with the highest certainty.
Moreover, the application of the GA leads to the discovery of
a slightly more effective treatment than the SA. However, GA
requires more computational resources and simulations than
the SA. The experimental results indicate that a trade-off
between the required resources and the quality of the results
is evident in both parts of the workflow.
In the future, we plan to employ additional classification

algorithms in the active learning workflow, such as the Gra-
dient Boosting Trees [22], and to compare their performance
with the RF classifier. Moreover, we plan to incorporate inter-
active tools in order to allow the researcher to better control
the exploration process, by explicitly selecting parameter
values to evaluate throughout the iterations. The workflow
will also be extended to explore the synergistic effects of
multiple drugs administration in more complex simulations.
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