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1 | INTRODUCTION

Computational systems biology is a research field that combines mathematical and computational models, together with molec-
ular data, in order to improve our understanding of biological systems." Among others, it has been applied to the study of cancer
in an attempt to understand the behavior of tumors and predict treatment effectiveness.? In particular, computational simula-
tions have been used to model the development and evolution of tumor cells, which is the result of many different interacting
processes that occur at different scales across time and space. Take as an example the mutations and other DNA alterations that
happen at the molecular level and can potentially damage the function of genes." These mutated genes may have an impact on
the correct functioning of cell processes, such as signal transduction and gene regulation. In turn, this can lead to the transforma-
tion of healthy cells into malignant or tumor cells.* Therefore, modelling and simulating cancer is a challenging problem, due to
the multi-scale nature of this complex multicellular disease.” In parallel, realistic models are instrumental to the interpretation
of biological experiments and the derivation of mechanistic explanations that can be translated into new experimentally testable
hypotheses.® This way, faster and zero-risk experiments can be performed in-silico to provide further insight to domain experts.

0Abbreviations: EMEWS, extreme-scale model exploration with swift; GA, genetic algorithm; HPC, high-performance computing; TNF, tumor necrosis factor
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Focusing on drug treatment exploration, the systems biology community has developed various approaches for predicting
novel targets and new drugs that can potentially stop or reduce tumor growth.” Each of these approaches may focus on a different
cellular process associated with cancer, such as cell signalling,® or metabolism.” However, tumor cells display a high degree of
heterogeneity, which is strongly related to the capability of tumors to develop resistance to drugs, or to attacks from immune cells
or changing environmental conditions.™ ' For this reason, analytical model formulations that assume particular distributions
and related parameters, or operate at a macroscopic level to derive closed formed solutions, are not always suitable.' Instead,
this has motivated the development of multi-scale agent-based approaches that integrate intracellular models into individual cell
agents, allowing the simulation of heterogeneous populations and the modelling of how cell variability can affect a treatment
outcome.’? Such agent-based models provide a balanced combination of features that suits well the modelling of biological
tissues, as they combine: (i) the ability to study the behavior of cell populations that have a direct correspondence to biological
tissue phenotypes, (ii) cell-level granularity that allows us to study mutations at the single-cell level, (iii) intracellular models
that can capture gene-level changes, and (iv) explicit descriptions of the environment, which have a direct correspondence to
laboratory experiments.* Multi-scale models have been used to simulate the evolution of a tumor by taking into account the
molecular details of individual cells and, thus, are valuable tools for performing in-silico experiments. 21

Despite their power and versatility, multi-scale models have many different parameters (e.g., diffusion constants, rates of
different cellular processes) whose values must be properly fine-tuned in order to reproduce biologically plausible simulations
that are in line with real-world outcomes.'Z A subset of these parameters can be set, based on experimental measurements in
the literature or in relevant databases. However, for most of them, there are no such real-world measurements and they need to
be calibrated or inferred using indirect sources of information. A common practice is to employ optimization methods in order
to find the parameter values that better explain the available experimental observations.'8 However, multi-scale models are
complex and the optimization of model parameters on the data cannot be performed given the absence of a sufficient amount of
data. As a result, the evaluation of a candidate set of parameter values must be performed by executing simulations that require
significant time and computational resources.’® The results of such simulations then need to be inspected visually by experts
or compared against desired outcomes or gold standards, which are already known to be biologically plausible and interesting.
Such expert knowledge is very scarce and corresponds usually to just a few specific cases and experimental configurations.
Additionally, due to the size and complexity of the parameter space, an exhaustive search is prohibitively expensive. Therefore,
efficient methods for exploring such complex parameter spaces are required.2

In this paper, we re-designed and extended a multi-scale agent-based model to simulate the growth of a tumor spheroid. 9 The
framework allows to explicitly simulate the cell population without the need for any coarse-grained approximation. Our model
takes into account the effects of the Tumor Necrosis Factor (TNF), a signalling molecule that binds to cell receptors and can
trigger a wide range of different responses.2! In particular, TNF can induce death in cancer cells by activating specific down-
stream signalling pathways, thus restraining the growth of a tumor. The extended version of the multi-scale model includes an
explicit submodel of the TNF-receptor dynamics. To simulate the effect of the drug, we use a Boolean network for modelling
intracellular signalling and cell fate, which is a generic approach for cancer signalling that has already been validated experi-
mentally. This model accounts for the emergence of resistance after long exposure periods and the mechanisms are explicit in
the structure of the regulatory network. The model incorporates experimental parameters, such as the doubling time and the
volume of the specific cell line. However, the model also includes unknown parameters that should be calibrated before using
the framework to explore treatment strategies.

We have implemented a workflow on a High Performance Computing (HPC) cluster for the efficient calibration of the model’s
unknown parameters, as well as for model exploration of treatment strategies that minimize tumor growth. In previous work,
Letort et al.l% calibrated a first version of the model by integrating experimental data from Lee et al. (2016).%? Herein, we
use two simulated time trajectories reported by Letort et al. (2019) as ground truth to calibrate the values of four unknown
parameters introduced in the explicit TNF-receptor model. In other words, since our model has now an explicit submodel for
the TNF-receptor dynamics, we used the simulation trajectories reported by Letort et al. as a gold standard to “calibrate” our
extended version of the model. During the model calibration, we investigate different distance metrics for comparing the gener-
ated simulations against the gold standard, and we propose an informed search strategy, based on a Genetic Algorithm, which
we compare against a plain Sweep search method.

Finally, we use the calibrated model and the implemented exploration workflow to investigate drug treatment strategies that
minimize tumor size while avoiding the emergence of resistant cells in the long term, i.e., cells that become unresponsive to a
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drug or signal after being exposed to it for extended periodsm By analyzing our results, we can investigate the effect that drug
dosage and frequency have on the overall cell survival. Furthermore, the parallelized framework that we propose can be easily
re-used for simulating different experimental setups and cancer types, by simply replacing the Boolean model In summary,
our contributions are:

e The design and implementation of a multi-scale agent-based model for simulating tumor growth subject to TNF
administration.

e The integration of the simulator into a parallel, HPC compatible model exploration workflow. The parallel workflow is
used first for calibration, and then for searching effective drug treatment strategies.

e The incorporation of a distributed Genetic Algorithm into the workflow for searching the parameter space.

e Results show that our approach manages to find appropriate values for the parameters in question, resulting to effective
treatment strategies that are able to reduce tumor growth, while avoiding the emergence of resistant cells.

e By parallelizing the workflow and employing the Genetic Algorithm, the overall complexity is reduced both in terms of
time spent and computational resources required, compared to an uninformed Sweep search approach.

Therefore, the proposed approach reduces the computational requirements without compromising model quality. As a result,
the cost of research on drug effects is reduced significantly. Altogether, our results show how multi-scale models, coupled with
HPC-based model exploration workflows, can be used to perform large-scale in-silico screening of treatment strategies, which
can then be tested in in-vivo models, accelerating the process of novel treatment discovery.

The remainder of this paper is structured as follows: Section 2 briefly discusses related work; Section 3 presents the model
that the multi-scale simulator is based on. Then, Section 4 introduces the parameter exploration problem that we address, as well
as the proposed distributed Genetic Algorithm approach. Section 5 analyzes the experimental results, while Section 6 concludes
and proposes directions for future work.

2 | RELATED WORK

Computational tools and methods are being applied extensively to solve problems of biology and chemistry. A popular approach
for the modelling of tissue response to therapies is to consider global optimization models and seek—or solve analytically—the
parameter values that optimize particular objectives, such as the response of the tumor to a treatment. For example, Lind et al.2*
construct a probabilistic model and solve for the parameter values that maximize the probability that tumor control treatments
will be complication-free. In another case, Lobato et al., 2> consider drug treatments as optimal control problems, which are
solved by a multi-objective optimization differential evolution algorithm. The aim is to minimize the concentration of tumor
cells, by using as few drugs as possible. Mohan et al.,?® introduced a multi-step optimization procedure that takes into account
various clinical factors and uses Simulated Annealing to search for better performing treatment plans. Zhang et al.%” accounts for
the drug properties and the changes induced in the tumor microenvironment, performing also in-vivo experiments to illustrate
the effectiveness of the proposed treatment optimization strategy.

In addition, modelling has been used to optimize tumor treatments that are not based on drugs. Marino et al.*® optimized the
electroporation-based treatment of tumors, using a shared-memory implementation that takes advantage of parallel resources.
Ballo et al.”? studied the optimal electric fields dosimetry in glioblastoma by creating magnetic resonance imaging models of
patients, simulating the effect of different dose densities of electric fields and correlating them with the survival of patients. In
our work, we consider an agent-based model that simulates the growth of tumor spheroids. The basis of the proposed approach
is a Boolean model of intracellular signals, which cannot be solved analytically to obtain the best drug treatments. To guarantee
that simulations correspond to real cases, we fit the parameters of our model taking into account results from past trials. Then,
we use the simulator to discover effective treatment strategies. For this purpose, we propose the use of a Genetic Algorithm, as
that improves upon existing methods on the use of time and computational resources.

1’28

!For a more in-depth study regarding this process, please refer to Calzone et al. 2010.23
2For instance, the systems biology community has reconstructed Boolean models of cell signalling networks for many different cancer types: http:/ginsim.org/models_
repository
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If we were to adopt a different approach for our problem, we would need to define a coarse-grained mean-field based on an
ordinary differential equation that simulates the dynamics of the alive, apoptotic and necrotic cells. In the case of the alive cells,
the equation should consider the effect of the TNF and it should also account for the emergence of resistance after prolonged
periods of exposure. This would require introducing many assumptions on the different processes. Moreover, this would make
the model very case-specific and hard to reuse in other contexts. Instead, we implement our model using a general multi-scale
modelling framework. The framework allows to explicitly simulate the population of cells without the need for any coarse-
grained approximation. Furthermore, we use parameters measured for the experimental setup we are modelling, like the doubling
time and the volume of the specific cell line use in the experiments. To simulate the effect of the drug, we use a Boolean network
model for intracellular signalling and cell fate, which is a general model of cancer signalling that has already been validated
experimentally. In our case, it accounts for the emergence of resistance after long periods of exposure and those mechanisms
are explicit in the structure of the regulatory network. Since our model is implemented using a multi-scale framework, the
different modelling components are modular and therefore other researchers can take advantage of it and adjust it to study
other experimental models, just by changing parameter values on the configuration file. Therefore, besides the specific in-silico
experiments performed and reported in this work, most components from our multi-scale model could be replaced or adapted
to study other experimental systems in other conditions.

Genetic Algorithms have been used in a variety of cases.2"3!For instance, Sahlol et al.32 proposed the use of Neural Networks
that had their weights optimized by a Genetic Algorithm to predict gene expression, related to the response to cisplatin-based
chemotherapy. Other researchers have applied Genetic Algorithms to find beneficial drug configurations for HIV patients, by
also taking into account stochasticity in their model.*¥ In that case, the cost function minimises the number of virus particles left
in the organism. In a very different domain, King et al.** employed a Genetic Algorithm to search very large mutant libraries
for amino acid sequences that optimize certain desirable biochemical properties, such as the binding affinities for target cell
receptors. The authors evaluated candidate sequences by running molecular dynamic simulations, a computational method which
allows to estimate binding affinity in-silico. Using their approach, the number of samples that need to be examined is significantly
reduced and the quality of the acquired solutions improves.

Genetic Algorithms and Machine Learning approaches have also been extensively used to explore multi-scale models of multi-
cellular systems, such as tumor growth. For example, Jagiella et al.*> developed a parallel approximate Bayesian computation
algorithm to parametrize multi-scale models of cells growing in a dynamically changing 3D nutrient environment. An early
rejection mechanism is utilized in their work, i.e. a threshold on the objective function is set to determine if a non-interesting
case appears and should be skipped, thus sparing computational resources.

Note that the case we are examining—i.e., searching a large parameter space—is challenging for many data-driven approaches,
which require large amounts of annotated data, since such data is usually not available. Instead, the approach proposed in this
paper requires only some reference data (i.e., summarized results from just two past experiments) to calibrate a number of model
parameters. The calibrated model can then be used to conduct simulations that correspond to in-silico experiments, where the
outcomes may guide real world trials.

Recently, Ozik et al. have integrated the mechanistic 3D multicellular simulator PhysiCell with the model exploration platform
EMEWS2% and have used it to adaptively sample control parameters that maximize cancer regression in an agent-based model of
immunosurveillance against heterogeneous tumors.?® EMEWS (Extreme-scale Model Exploration With Swift) is a framework
that enables the parallel execution of multiple model exploration tasks. An Active Learning approach is used to explore the
parameter space and discover optimal cancer regression regions for the parameters. The results of active learning were compared
against those of a GA search in the parameter space. The Active Learning=® and Approximate Bayesian Computation> may
also be of use in our method as EMEWS components, but they come with a high computational cost.

In this paper, we develop a multi-scale agent-based model of a tumor spheroid using PhysiCell and provide the cell agents
with an intra-cellular signal transduction model. The signalling model is used to compute cell responses to perturbations such
as the presence of signalling molecules and drugs, which in our case is the Tumor Necrosis Factor (TNF) protein. We integrate
this cancer model into the model exploration framework EMEWS in line with existing approaches in the literature.2Y However,
we develop a different workflow composed of two stages: First, we calibrate the bio-physical parameters of our model. The cal-
ibration employs a genetic search for the optimal parameter values, guided by the set of bio-physical parameters that optimize
the fitting to selected gold standards. To measure the distance between simulation time-series and gold standards, we test dif-
ferent distance metrics. In the second stage, we use the calibrated models to explore tumor reduction strategies, based on the
periodic injection of a signal molecule, the TNF, that is able to induce tumor cell death. In this stage the model needs to capture
complexities, such as the fact that cells exposed to the signal for long periods can develop resistance to the administered drug



Akasiadis & Ponce-de-Leon ET AL 5

Microenvironment

TNF Receptor
ODE Model

Boolean model

Kneco ¥ ¥ Kapoo
‘ Phenotype

‘ Cell Fates
@ Kiec1y

knEE,Z ﬁ

Removed

Kapo,1

FIGURE 1 On the left side, the figure represents an agent-based population of cells growing in a defined microenvironment.
On the right side, the figure shows the intracellular models that rule the behavior of the cell agents. The models include: the
TNF receptor model; the cell regulatory Boolean model; a transfer function to connect the two; the cell cycle model; and the
death models for apoptosis and necrosis.

and evade death. Therefore, the proposed method for model exploration searches for TNF supply strategies that maximize tumor
regression, while avoiding the emergence of cells resistant to the treatment.

3 | SIMULATION OF THE BIOLOGY MECHANICS

In this section, we describe the multi-scale model of 3D tumor spheroids, which is used to study and optimize treatment strategies
that reduce the tumor size. Herein, a treatment corresponds to administering an amount of tumor necrosis factor (TNF) into the
simulated microenvironment. In general, the signal triggered by the binding of the TNF to the cell’s receptor will induce death
in cancer cells, through either of two alternative mechanisms: Necrosis (NonACD) or Apoptosis. Nevertheless, after prolonged
periods of exposure to the stimulus, cells find a way to bypass the death-inducing signal of the TNF and become resistant to the
effect of the molecule.?? As a consequence, treatment strategies based on shorter “pulses” of TNF have been proposed to avoid
the emergence of resistant cells (for further details, we refer the reader to the work of Calzone et al. (2010)23). In the following
we present the details of our model’s implementation.

We implemented our multi-scale model using the PhysiCell framework™ with PhysiBoSSV2.0.|EE| PhysiCell is an open-
source physics-based cell simulator for 3D multicellular systems that allows us to study many interacting cells in dynamic tissue
microenvironments. =5 Cell mechanics are simulated using mechanical equations with default parameters from PhysiCell. The
microenvironment is modelled using BioFVMEZ, a solver for partial differential equations that can efficiently simulate key cell
processes, such as secretion, diffusion, uptake, and the decay of multiple substrates in large 3D domains. PhysiBoSSv2.0 is
an extension of PhysiCell that enhances the modelling capabilities by allowing simulations of Boolean models of regulatory
networks within each individual cell-agent. The computational complexity of the simulations scales linearly with respect to the
number of cells (O(n)).

Figure [T] shows a schematic representation of our model that represents a tumor spheroid composed of a population of cells
proliferating in a defined microenvironment. The microenvironment is modelled as a 3D domain which includes two diffusive
molecules (or densities), one corresponding to oxygen (required for cell proliferation) and another one corresponding to the tumor
necrosis factor (TNF). The diffusion, secretion, and import of the different densities are simulated using PhysiCell’s standard
partial differential equation solver, the BioFVM.?Z In the case of oxygen, we used the PhysiCell default configuration which

3The PhysiBoSSv2.0 is available at: https://github.com/PhysiBoSS/PhysiBoSS
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corresponds to the oxygen level in normal conditions. On the other hand, the TNF supply depends on the treatment strategy
used to counter tumor growth and thus, is a parameter subject to optimization.

At the cell level, each individual tumor cell is modelled as an individual agent that has different internal sub-models, which
represent and simulate the known molecular mechanisms that rule its behavior. As depicted on the right side of Fig.[I} we can
distinguish three intracelluar sub-models, one for modelling the TNF-receptor dynamics, one for modelling the cell regulatory
network and one for the phenotype cell fate models. The TNF Receptor (TNFR) dynamics, i.e. the way TNF molecules attach
to cells, is modelled using a set of differential equations that account for the experimental characterization of the TNFR binding
dynamics described in in-vivo cells®® and considers (a) the binding of the TNF to the cell receptor (ky), (b) the internalization of
the TNF-receptor complex (k,), (c) the recycling of the receptor (k5), and (d) the cell growth rate (k,, not shown in the figure).
Cell receptors are proteins with the function of sensing different stimuli and transmitting signals by activating downstream
regulatory pathways that end up affecting the cell fate. In our model, the TNF is the signalling molecule that binds to TNFR
(receptor) and can trigger downstream effects. The binding process has an associated rate or kinetic constant (k). After binding
and triggering its effect, the complex formed by the TNF bound to the receptor gets internalized into the cell (endocytosis) at a
given rate (k,), and once inside the cell, the TNF is degraded and the receptor recycled for its further reuse (k;). The equations
below describe the sub-model:

[R,] .

- = —k\[RITNF] + k3[R’

[R:] .

- = k,[R,][T N F] - k,[R}] (H
IR = k,[R*] — k;[R*

= J[R0] = k3 [R7]

In the above equations [R], [T N F] and [ R*] are the concentrations of the receptor, the TNF and the complex, respectively.
The subscripts i and e denote internalized and external TNF receptor complexes. Within each cell, the TNF receptor model is
simulated numerically using the backward Euler method and the numerical integration is conducted at the same time scale used
to solve the diffusion.

Then, when the TNFR complex concentrations ([ R}]) reach a defined threshold, specific regulatory pathways are activated. 38
The signal propagation through the pathways is modelled using the Cancer Cell Fate Boolean model, a Boolean network model
tailored to cancer regulatory networks.? This model accounts for the most relevant regulatory pathways in the cancer cells and
for three different cell fates or phenotypes, named Proliferation (‘Alive’ cells), Apoptosis (programmed cell death, or ‘Apoptotic’
cells), and Necrosis (non-apoptotic cell death, or ‘Necrotic’ cells). The Boolean model cell is simulated stochastically using the
MaBoSS method.*” After updating the internal state of the Boolean network, the Cell Fate node values are used to further update
the Phenotype Cell Fate. Finally, to model Phenotype Cell Fates, we used the standard “live cells” cycle model,* where live cells
proliferate with a variable birthrate (k,), or enter into necrosis or apoptosis with given rates k. o and k,,, o, respectively (see
Phenotypes Cell Fates at the right side of Figure|[I). The equations describing the process of Proliferation, Necrosis (NonACD),

and Apoptosis are the following:
Prob(divide) = k, At

k At n =0
Prob(necrosis) = {lnec,o NonACD

NNonacp = 1 )
P’”Ob(alwptosis) ~ { apo,0 Apoptosis
1 M gpoptosis = 1

where Prob(divide) is the probability of a cell starting division at a given time step, and Prob(necrosis) and Prob(apoptosis)
are the probabilities of a cell starting necrosis or apoptosis at a given time step, respectively. Cell growth and death are modelled
using the standard PhysiCell models and default parameters, with the exception of cell growth rate k, which is calibrated by
the method proposed in this paper. Nonetheless, at a given time, any cell can start apoptosis or necrosis if the corresponding
Boolean node (14,1055 OF My onacp) 1S active in the Boolean model.

Having developed the simulator, we select sets of parameter values, both for the rates of the agent model (denoted as k,, k,,
ks, k4), and the drug treatment characteristics that are used in the exploration step. The different treatment strategies are defined
as TNF pulses of a given concentration, duration and frequency, corresponding to three numerical values that are subject to
exploration (ks, k¢, and k; in Table . Subsequently, we use an optimization via simulation approach to first obtain values for
the four k; rates, and then to identify treatment strategies that minimize the number of alive cells and avoid the emergence of



Akasiadis & Ponce-de-Leon ET AL 7

a)

AN
AN

N Y/
N7/, )
ANZSA =
. A ONNT N //N [
- Multi-scale model 'v.'oojlo:%\\&\“\‘::fﬁf\:#//l} >
NS
- Za ramdetersh ~ \?‘:tg\\\:‘o"::‘\\s;'zft\ \\ 7
_ > SIIERSAEXRS |
- B NN
- ME Algorithm B SO ©
RIS
RIS
b) =
I;IT I;IT [ Distributed Evaluation of models/parameters]
Workflow (GA/Sweep) Lo

/Evaluated parameters\Bi:;‘
Worker 1 Worker 2 Worker N

(sims outputs)

P i) Simulate Simulate Simulate
Queue Model Instance Model Instance Model Instance

.
Candidate parameters I
| (simulation inputs) 1

Model
Exploration

ﬁ Model Exploration Update & }

New parameters generation

FIGURE 2 Overview of our model exploration approach. a) The multi-scale model is combined with Model Exploration (ME)
in a High Performance Computing cluster to calibrate parameters and to explore treatment strategies. b) Schematic overview of
our EMEWS workflow, where the orchestrator (implemented in Swift/T) guides the execution of parallel simulations (Physi-
BoSSv2.0 instances), aggregates evaluation results and communicates the results to the ME resident process (Sweep or Genetic
Algorithm Search, implemented in Python) which learns from previous results and generates a new set of candidate parameters
for their evaluation.

resistance, i.e. cells that have activated their survival mechanisms upon TNF reception and are deemed unresponsive to the TNF
treatment.

4 | PARAMETER EXPLORATION: CALIBRATION AND DISCOVERY OF TREATMENTS

Having described the simulator, we now present the parameter exploration framework that we propose. Simulations are exe-
cuted in parallel on an HPC infrastructure using the EMEWS framework.™® Once the results are obtained, a post-analysis is
performed where only the relevant parts are examined, in our case the time-series of alive, apoptotic and necrotic tumor cells.
Our implementation combines EMEWS for parallelizing the candidate solution evaluations and the DEAP Python libraryﬂ for
the Genetic Algorithm. The proposed approach follows the main principles of model exploration searching for parameter values
that minimize desired metrics defined over the simulation results. A schematic overview of the approach is shown in Figure 2]

A standard way to search for optimal parameter values could be to use a Sweep search method. However, given the large size
of the search space, a more efficient solution is needed, such as a Genetic Algorithm. The latter can search the space in a more
informed manner, based on a fitness function that evaluates candidate solutions. This way, we expect to achieve better results,
using significantly fewer computational resources when compared to the exhaustive Sweep search.

4https://github.com/DEAP/deap
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TABLE 1 Ranges of the PhysiBoSS parameters. The first 4 are fitted during the calibration step, while the other 3 are explored
during the drug discovery process. These ranges are estimated empirically by domain experts with long experience in this field
of research.

Parameter Min Max
k,: TNFR Binding rate 0.01 1
k,: TNFR Endocytosis rate 0.01 1
ks: TNFR Recycling rate 0.01 1
k,: Cell growth rate 0.0001 | 0.002
ks: TNF Administration Frequency 10 1200
k¢: TNF Duration 5 30
k;: TNF Concentration 0.005 0.4

4.1 | Configuring the multi-scale model of tumor growth

To properly calibrate the simulator, it is crucial to determine the values for (i) the TNFR binding rate, (ii) the TNFR endocytosis
rate, (iii) the TNFR recycling rate, and (iv) the cell growth rate. To ease notation, we refer to these parameters as k;, i €
{1,2,3,4}, respectively. Once the simulator has been calibrated, we can then explore the effectiveness of various drug treatment
policies. In this second step, the k; values correspond to the respective drug treatment configuration parameters, i.e. (i) the
TNF Administration Frequency, which shows how often the drug is injected and is measured in minute intervals, (ii) the TNF
Duration, dictating for how long the drug is administered, and (iii) the TNF Concentration. These are denoted as k;, i € {5,6,7},
respectively. The allowed value ranges for these variables are shown in Table|[I}

4.2 | Fitness function

The suitability of specific configurations for the parameters k;, i € {1,2,3,4} can be assessed by comparing the resulting
simulations against some gold standard simulations that are considered ground truth. These gold standards constitute the time
series of ‘Alive’, ‘Apoptotic’, and ‘Necrotic’ cells, when applying TNF injections every 150 (TNF=150) and 600 (TNF=600)
minutes. In both injection strategies the duration is 10 minutes and the concentration of TNF is 0.02 TNF/um?. Regarding the
gold standard cases used in the optimization process, these may originate either from real world studies (possibly small-scale)
or from other simulators that have been validated and shown to produce realistic results in the past. Here, we use a stable version
of the PhysiBoSS simulator to generate gold cases.

The first goal of the optimization process is to determine the k;, i € {1,2,3,4} values that produce simulations as close
as possible to the ground truth set by the gold cases. Once the model has been calibrated, the second set of k;, i € {5,6,7}
parameters are explored, to find good drug treatment policies that can benefit real-world trials. To address each of the two
optimization cases, the following minimization objectives are employed: (i) the sum of distances between the gold standard time
series and the simulations produced by the set of k; values under examination, or (ii) the number of ‘Alive’ cells at the end of
each simulation, indicating the effectiveness of treatment policies.

The main idea behind the distance-based fitness score is that, when a simulation matches the gold standard, the distance will
be minimized. When the distance is large, the fitness score of the candidate solution will decrease its probability of being selected
in the evolution process of the GA. In summary, the calibration step is used to fit the parameters, i.e to find the parameter values
that minimize the “distance” between the results obtained by the simulations and the gold standards.

Formally, for a simulation of length T time points, let L{ , N tJ , and Ptj ,t € 1,...,T be the normalized number of ‘Alive’,
‘Necrotic’, and ‘Apoptotic’ cells, for each of j € {TNF=150,TNF=600} gold standard cases, and l{ , n{ ,and p{ ,t €1,...,T bethe
normalized numbers of corresponding cell categories from the simulations produced by certain k; values. The normalization of
cell numbers is made by dividing each value of the time series (‘Alive’, ‘Apoptotic’, and ‘Necrotic’ cell counts) by the maximum
number of ‘Alive’ cells from the respective j case. This has shown to be necessary in order to remove bias, since, in the typical
case, the absolute cell counts of TNF=600 are larger, resulting to increased absolute distance.

In the calibration step, the value of the fitness function is given by:

Fu= D I =V, +[IN =n/||, + [P = p/|| 3)
J
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FIGURE 3 Genetic Algorithm flowchart. g denotes generation index; T denotes last simulation interval.

where ||.|| p denotes one of the three different distance functions tested. Equation El is thus the actual fitness function that the
GA seeks to minimize. In the first step of the calibration, we test the following distance metrics:

1. Euclidean distance.
2. The phase distance, computed according to the Dynamic Time Warping algorithm.*?
3. L,-norm, i.e. the absolute differences.

For the drug discovery step where k;, i € 5, 6,7 are optimized, the fitness score is simply the number of alive tumor cells at
the end of the simulation (non-normalized):
F, disc — lT (4)
In this step, the gold standards are not used, since we are already equipped with meaningful k;, i € {1,2,3,4} values.

4.3 | Genetic Algorithm

The goal of the genetic search approach adopted by our model optimization method is to converge to optimal areas of the k;
parameter space and reveal high quality combinations of the desired parameters. A flowchart illustrating the execution stages of
the proposed GA is shown in Fig[3]

First, a random initial population of a given size is generated, i.e. random selections of k; values, which from now on will be
referred to as individuals. Individuals are represented as tuples of real values. Depending on the optimization scenario (either
calibration, or drug treatment exploration marked by a dashed border in Figure [3), the values of some tuples are fixed. At the
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calibration stage we fix TNF time, duration, and concentration as dictated by the gold standard cases, while in the exploration
phase we use the best binding, endocytosis, recycling, and growth rates discovered in the calibration trials. Given a particular
parameter configuration, i.e., an individual, PhysisBoSSv2.0 performs the simulations and the results are evaluated according
to the corresponding fitness function, either eq. (3)), or eq. {@). Due to inherent simulator stochasticity, a feature that leads to
slightly different cell count values in each run using the same k; values, simulations are repeated for the same individual. The
fitness score of each individual is the average of the scores produced by the duplicate runs.

The fitness of each individual is used to select individuals for the next generation of the GA. Once the surviving individuals
are selected, the crossover operator is applied on them, to generate new ones hence exploring alternatives that may lead to better
fitness values. For similar purposes of exploration, mutation is randomly performed on each of the individuals, switching the
value of a single parameter according to a given probability.

This procedure, i.e. evaluation, selection, crossover, and mutation is performed repeatedly for a designated number of iterations
Max_gen, or until other termination criteria are met. In our implementation, the GA is configured to work with four different
termination criteria that include reaching a maximum generation number, achieving a minimum fitness score, and converging to
low population fitness variance or average scores for five consecutive generations. Finally, the result of the process includes the
k; values that achieved the minimum fitness score, the score value itself, and the results of the corresponding PhysiBoSSv2.0
simulations during the evaluation for that particular individual. The latter comes in the form of time-series depicting the cell
count of each cell category of interest. The main computational bottleneck in the presented GA workflow is the evaluation
of each individual with PhysiBoSSv2.0. For this reason, in the EMEWS workflow, each simulation is assigned to a number
of threads, so that each part is effectively delegated to different processors. This enables parallel execution, thus reducing the
individual CPU computational burden. Further computational savings are achieved by the proposed method in two ways: (a) by
reducing the required simulations in both stages, and (b) by reducing the simulation time in the second stage, due to the use of
more effective drug treatments. Simulation time is shorter for effective treatments since fewer tumor cells survive.

4.4 | Computational Complexity

We are now looking closer at the computational savings introduced by the proposed framework in computational complexity
terms. As discussed in Section [3] the complexity of a PhysiBoSS simulation increases linearly with the number of cells # that
take part in the analysis. In order to execute m simulations sequentially, the time complexity would be O(m - n). However,
by taking advantage of the HPC infrastructure, and using ¢ processors, the complexity reduces to the order of @O((m/c) - n).
This is the case for an exhaustive approach, like Sweep search. The complexity of the GA on the other hand, depends on its
configuration, in particular on the population size p and the number of generations g. Using ¢ processors for parallel execution,
the time complexity of the GA is of order O(((p - g)/c) - n). Therefore, in order for the GA to lead to computational savings
compared to Sweep search, (p - g) should be smaller than m. The experiments in Section [5|show that this is indeed the case.
Moreover, it is worth noting that the parallelization of the GA is limited by p, i.e. the size of the population, as two individuals
(simulations) in different populations cannot run in parallel.

S | EXPERIMENTAL RESULTS

In this section, we present the results of our experiments, which illustrate the added value of the proposed approach. Our GA
implementation can be found in an online repository, along with instructions for reproducing the experiments and links to the
dataset that was usedE] For evaluation purposes, the GA was configured to run for 30 generations, with a population number
of 40 individuals. As a selection operator, we employed the ‘“Tournament Selection’ with tournament size 3, after empirically
observing that it leads to high quality solutions. Among the various crossover operator types, we choose the Uniform crossover
that applies equal probability of inheritance to all parameter values of a selected individual. The crossover probability was set to
0.75 and the mutation probability to 0.5. The chosen hyperparameter configuration was obtained through experimentation in a
reduced search space. Figure [d] presents the evolution of the crossover and mutation probabilities for the best individual in these
small scale experiments.

To illustrate the value of the proposed GA approach, we compare it against an exhaustive Sweep search, which evaluates
iteratively a grid of individuals distributed uniformly in the search space. The grid is predetermined and one simulation for each

Shttps://github.com/xarakas/spheroid- tnf-v2-emews
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point is executed. No particular prioritization is given to different points or subsets of the grid. One drawback of this method
when we try to balance the trade-off between reasonable execution time and amount of points evaluated, is that we may end up
with a sparse grid. This may in turn lead to good simulations being skipped and never examined. Instead, the GA manages to
focus on solutions of high quality using significantly fewer resources.

All experiments were conducted using the Mare Nostrum 4 (MN4) HPC infrastructure provided by the Barcelona Supercom-
puting Centreﬁ] We used up to 8 nodes with 384 processors in total.

5.1 | Simulator Calibration

First, we assess the performance of Sweep and Genetic search in calibrating the simulator. For Sweep search we create a grid of
uniformly distributed points in the four dimensional space of the k; parameters and evaluate each one of them without a particular
preference in the ordering of the simulations. The L-distance scores for each parameter configuration are shown in Figure [5]
using different heatmap colors. We observe that there are regions of the space that lead to better scores, i.e., similar results to
the gold standards (light blue squares). There are also critical regions, beyond which parameter values produce simulations that
differ significantly from the gold standards (orange, red and darker blue squares). Moreover, there seem to be ridges between
‘worse’ and ‘better’ regions, where locally minimum solutions are to be found. The k 4-tuple with the lowest L, distance is
marked with a red star. It is worth noting that the L, distance is selected only as an illustrative example as it has more variance
than the Euclidean, making the comparison more clear and accessible.

In Fig. [6| we present the respective heatmap depicting the space visited by the GA using again the L, distance. In order to
make the results comparable to Sweep search, which examines only 10 predetermined values on each dimension, we group the
GA points in the ranges set by these grid values. The best solution is marked again with a red star, and the light orange areas
correspond to value ranges that the GA did not assess. The Figure clearly shows that the GA evaluates a very sparse grid of
points most of which are located inside the ‘interesting’ regions of Fig. [5]

In order to gain further intuition about the behavior of the GA, we restrict the space to a 3-dimensional one in Fig.[7]by fixing
the k, parameter to the region indicated in the fifth and sixth row of Fig.[5] and Fig. [f] respectively. We show a small range
instead of a particular k, value, because the GA did not visit any individual with an exact value of k, = 0.000944; however it
did visit other individuals that have a k, that is quite close to that. In the figure we can see that the GA avoids the evaluation
of low quality configurations, by utilizing the selected fitness function and the genetic operators. Furthermore, the GA searches
subspaces with local optima, and in later generations it focuses around solutions that give promising results.

The actual parameter values selected by each method are shown in Table[2] along with the corresponding distances. Note that
absolute distance values are not directly comparable, due to the different range of each function. Looking closer at the selected
parameter values, cell growth (k,) seems similar for both methods and all distance types, implying that its optimal value is
bounded. In the case of the recycling rate (k;), the selected values are again similar, with the exception of DTW for both search
methods. This is due to the fact that the recycling rate is related to periodic effects, for which the DTW distance is not strict;
it is designed to bring close instances, even though them having different phases. Finally, for the remaining parameters (k; and
k,), the two search methods make different selections. This happens because the particular best point found by Sweep search is
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FIGURE 4 Performance of the best individual for different crossover and mutation probabilities in a subset of the search space.
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FIGURE 5 Heatmap of all k 4-tuple L, distances, as evaluated by the Sweep search. The red star denotes the configuration with
the minimum score (k; = 0.89,k, = 0.34, k; = 0.56, k, = 0.000944, with score L, = 14.4). Each x-axis denotes the TNFR
Binding Rate, each y-axis, the TNFR Endocytosis Rate; columns correspond to TNFR Recycling Rate values, and rows to Cell
Growth Rate.

TABLE 2 Calibration results from Sweep search and the Genetic Algorithm

Method and Distance | Binding rate (k;) | Endocytosis rate (k,) | Recycling rate (k;) | Cell growth rate (k) | Score
o Euclidean 0.89 0.34 0.56 0.000944 2.53
3 DTW 0.89 0.45 1 0.000944 7.8
« L, 0.89 0.34 0.56 0.000944 14.4
Euclidean 0.21 0.16 0.53 0.00084 2.89

é DTW 0.33 0.17 0.34 0.001 9.85

L, 0.22 0.16 0.54 0.00097 16.28

located on a ridge of local minima that are close to each other. Overall, both methods lead to acceptable results that are close to
the gold standard time-series. The solutions produced by Sweep search seems fair slightly better than those of the GA.
Turning to the computational cost of the two approaches, in Table [3|the number of configurations (k 4-tuples) evaluated by
each method is shown, together with the total number of simulations that were conducted and the required time for them to
complete. Sweep search is shown in one row, because in a single run we can measure all three distances simultaneously, while
the GA follows a different evolution path for each distance. From these results, it becomes clear that the GA examines fewer
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FIGURE 6 Heatmap of all k 4-tuple L, distances, as evaluated by the GA search. The red star denotes the configuration with
the minimum score (k; = 0.22,k, = 0.16, k; = 0.54, k, = 0.00097, with score L, = 16.28). Each x-axis denotes the TNFR
Binding Rate ranges, each y-axis, the TNFR Endocytosis Rate ranges; columns correspond to TNFR Recycling Rate ranges,
and rows to Cell Growth Rate ranges. Light orange areas correspond to parts of the space that the GA did not evaluate.

points than the Sweep search. Since we compare against two different gold standard cases, i.e. simulation results from Letort et
al.1® that are considered as ground truth, the number of simulations is twice the number of configurations examined. In general,
as the GA examines fewer configurations, it also needs fewer computational resources.

Specifically, it performs an order of magnitude fewer simulations and with one sixth of the time spent compared to the
Sweep search approach. Recall that the genetic search population comprises 40 individuals for 30 generations. Therefore, 1.200
individuals are assessed in each run. However, a proportion of these correspond to duplicate individuals, which managed to
survive across generations, and do not need to be evaluated. Delving deeper into the evolution process, Figure [8] depicts the
normalized scores of the best individuals of each generation in the calibration trials. Despite the different magnitude of different
non-normalized fitness scores for each distance type Table [2] when examining normalized scores there is a clear drop in the
fitness, indicating that individuals of higher quality are examined throughout the generations. However, using the L, distance
the progress of the evolution process is smother.

As a final step in our analysis, we inspect visually the actual time-series produced by the simulator using the values selected
by the search methods, against the two gold standards. The results are presented in Figure[9] Looking at the gold-standard, solid
curves, for the TNF=150 injection strategy (left figures), we can see that the number of alive cells fluctuating every 150 minutes,
which is the administration frequency, but nevertheless achieving a decreasing trend. Respectively, necrotic cell numbers are
increasing as time passes. The apoptotic cells increase in the first half of the simulation to later follow the drop of the alive cell
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TABLE 3 Comparison between Sweep search and Genetic Algorithm for the calibration experiments that used 384 CPUs each.

Method k 4-tuples | Simulations | Minutes
Sweep | All distances 10000 20000 5268
Euclidean 940 1880 877
5 DTW 940 1880 881
L, 871 1742 876
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FIGURE 8 Genetic algorithm convergence.

count. In the second injection strategy, TNF=600 (right figures), the drug administration does not have the desired effect, since
the number of alive tumor cells grows larger than at the beginning of the simulation.

Regarding the behavior of the solutions selected by the search methods, we first examine the case of Sweep search (top figures).
For the TNF=150 gold standard (left figure), the chosen configuration behaves similarly to the golden one, independent of the
distance function that is used. The same holds for the TNF=600 case (right figure), especially in the first half of the simulation.
The number of alive cells seems to be underestimated in the second half of the simulation. Overall, the simulator seems to be

calibrated successfully by the search methods.
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FIGURE 9 Time-series produced by the fittest { TNFR Binding rate/k;, TNFR Endocytosis rate/k,, TNFR Recycling rate [k,
Cell growth rates [k, } value combinations. Top: Sweep search; Bottom: Genetic Algorithm. Left: 150" TNF pulse (Gold Stan-
dard #1 case); right: 600’ TNF pulse (Gold Standard #2 case). Green curves show the number of alive cells, red the number of
apoptotic cells, and black the number of necrotic cells. Solid lines are the gold standards. Dot-marked curves correspond to the
solution provided by the Euclidean distance, squared-marked curves correspond to those computed with the use of the DTW
distance, and ‘x’-marked curves computed with the use of the L, distance.

5.2 | Drug policy exploration

Having selected the best PhysiBoSSv2.0 configuration for the four rate values, we now focus our exploration on drug treatment
characteristics. In particular, the variables we wish to tune are the frequency of TNF injections, the duration and the concentration
of TNF dosages given to patients, i.e. each individual is represented as { TNF Administration Frequency/ks, TNF Duration/kq,
TNF concentration/k-}. Since in this stage there is no gold standard case to match against, the fitness function counts the number
of ‘Alive’ cells at the final time step of each simulation—which in our case is after 1440 minutes of treatment.

Similar to the previous set of experiments, we first perform a Sweep search of the space to identify interesting regions. Also,
to further simplify the presentation, we distinguish solution candidates to viable and unviable ones. The latter are those that end
up with more alive tumor cells at the end of the simulation than at the beginning, meaning that the particular drug treatment is
not successful. These solutions are omitted from the figures. On the other hand, the viable ones are those that manage to reduce
the tumor cell count.

The results of Sweep search are shown on the left of Figure[T0] marking with a different color each individual according to its
fitness score. As we can see, there is an interesting region that contains parameter values, which lead to promising drug treatment
configurations (dark blue and purple points). The GA on the other hand, as shown on the right of Figure [T0]converges to points
that lie within the interesting region marked by the Sweep search. Again, for the GA case, the size of each point increases
proportionally to the generation that it is examined, meaning that larger points are visited later in the evolution process. Thus,
the GA is able to distinguish among good and bad solutions and expand the search around potentially interesting regions of the
search space. The actual parameter values produced by each of the two approaches is shown in Table @] with the GA pointing
to a solution that leads to fewer tumor cells (191) than the Sweep search (197).

Table [5] presents the number of configurations examined, which is the same as the number of simulations performed in this
case, and the computation time for each case. The GA manages to arrive at good solutions of lower ‘Alive’ cell counts, by
examining one order of magnitude fewer candidate solutions than Sweep search, in less than half of the time.
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number of alive tumor cells at the end of the simulation.

TABLE 4 Drug policy exploration results of the Sweep search and the Genetic Algorithm.

Method | TNF Administration Frequency (k5) | TNF Duration (k) | TNF Concentration (k;) | No. of Alive cells
Sweep 260.52 20.78 0.067 197
GA 192 19 0.0457 191

TABLE 5 Comparison of the Sweep search and the GA for the drug policy exploration experiment. Each, used 384 CPUs.

Method | k triples | Simulations | Minutes
Sweep 8000 8000 2809
GA 632 632 1120

6 | CONCLUSIONS & FURTHER WORK

Multi-scale simulations have been proven quite valuable in various application areas and the domain of drug discovery is no
exception. In this work, we incorporated PhysiBoSSv2.0 into EMEWS workflows to allow the parallel execution of large-scale
cancer cell growth experiments. Our goal was first to configure the new version of the simulator properly in order to produce
useful results and then to use it for discovering effective drug treatment policies that are able to attack cancer cells and contain
their growth. Both for the model calibration and for the drug discovery stage, we proposed the use of a Genetic Algorithm that
can search the space efficiently utilizing a fitness function to characterize the suitability of candidate solutions. We assessed
different types of fitness functions and analyzed their ability to lead to good solutions. Our experimental evaluation, performed
on a high performance computing infrastructure, confirm the validity of the proposed approach, highlighting the difference
between informed and uninformed search strategies.

Moving forward, we plan to assess additional Al methods and compare their performance against the GA while also expanding
our search to other simulator parameters. Moreover, we are developing an approach for the early termination of non-promising
simulations, which seem to deviate from the objectives of the experiment. This could be achieved, for example, with the incor-
poration of early time-series classification techniques.***# Furthermore, our approach is incorporated in the HORIZON-2020
INFORE project in order to serve as a sub-module in a larger system designed for extreme-scale analytics.
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