
Appendix

Hypergraph Construction

Algorithm 1 presents the pseudo-code for constructing a reduced hypergraph, given a
training example D, a set of mode declarations and a set of template predicates. Constants
in D are appearing as nodes and true ground atoms as hyperedges, connecting the nodes
appearing as their arguments. The hypergraph is constructed by only allowing input
and output nodes, because only the search space defined by the mode declarations will
be eventually searched. Note that template predicates are not added in the hypergraph
because they are not allowed to appear in the body of a definite clause.

Algorithm 1 ConstructHG(D, modes, P)

Input: D: training example, modes: mode declarations, P: set of template predicates
Output: HG: hypergraph
1: for all constant k ∈ D do
2: HG[k] = ∅
3: for all true ground atom p(k1, . . . , kr) ∈ D & p /∈ P do
4: for all constant ki ∈ {k1, . . . , kr} do
5: if isInputOrOutputVar(ki,modes) then HG[ki] = HG[ki] ∪ {p(k1, . . . , kr)}

return HG

Algorithm 2 InitialSet(q, D, T)

Input: q: incorrectly predicted atom, D: training example, T: path template
Output: I: a set of grounded template predicates
1: I = ∅
2: for all axiom α ∈ T do
3: if ∃ literal ` ∈ α : signature(`)=signature(q) & isPositive(`)=isTrue(q,D) then
4: θ-substitute β = αθ where θ = {variables(`)→ constants(q)}
5: τ = templateAtom(β)
6: if ∃ variable v ∈ τ then
7: L = ∅
8: for all literal ` ∈ β : ∃ v ∈ τ ∧ v ∈ `, do
9: L = L ∪ `

10: for all literal ` ∈ L do
11: K` = {k1, . . . , kn} ∈ D : `(k1, . . . , kn)⇒ >
12: for all row r = {k1, . . . , kn} ∈ ./|L|`=1K` do
13: θ-substitute γ = βθ where θ = {variables(β)⇒ r}
14: I = I ∪ templateAtom(γ)

15: else
16: I = I ∪ τ
17: return I

1

Initial Search Set

Algorithm 2 presents the pseudo-code for extracting ground template predicates (initial
search set I), used for relational pathfinding, given a training example D, a path template
T and an incorrectly predicted atom q. The algorithm considers each axiom α ∈ T in turn
and checks if α contains a predicate having identical atom signature and literal type with
q. Atom signature is the combination of predicate symbol and arity. The literal type can
be either positive or negative. For each axiom satisfying these properties, it substitutes
the constants of q into α and checks whether the template predicate still contains any
variables. If there are no variables left, it adds the grounded template predicate to I and
moves to the next axiom. Otherwise, it searches for all literals in the axiom sharing the
remaining variables with the template predicate. For these literals, it then searches the
training data D for all jointly ground instantiations among those satisfying the axiom. For
each of them, it substitutes the remaining variables of the template predicate and adds
the resulted ground template predicate to I.

Mode-Guided Search

Algorithm 3 presents the pseudo-code for mode-guided relational pathfinding that searches
the hypergraph for appropriate bodies explaining the grounded template predicates of the
initial search set I. Given a starting path having only a single grounded template predicate
it recursively adds to the path hyperedges (i.e., ground atoms) that satisfy the mode
declarations. The search terminates when the path reaches a specified maximum length
or when no new hyperedges can be added. The algorithm stores all paths encountered
during the search.

Algorithm 3 ModeGuidedSearch(curPath, V, HG, mode, maxLength, paths)

Output: paths: a set of paths
1: if |curPath| < maxLength then
2: for all constant k ∈ V do
3: for all p(k1, . . . , kr) ∈ HG[k] do
4: if canAdd(p, curPath, mode) then
5: if curPath /∈ paths then
6: curPath = curPath ∪{p(k1, . . . , kr)}
7: paths = paths ∪{p(k1, . . . , kr)}
8: V ′ = ∅
9: for all ki ∈ {k1, . . . , kr} do

10: if ki /∈ V & isInputOrOutputVar(ki, mode) then
11: V = V ∪ {ki}
12: V ′ = V ′ ∪ {ki}
13: ModeGuidedFindPath(curPath,V,HG,mode,maxLength,paths)
14: curPath = curPath \ p
15: V = V \ V ′

2

Online Structure Learning using Background Knowledge Axiomatization

Algorithm 4 presents the complete OSLα procedure.

Algorithm 4 OSLa(BK,P,modes,maxLength,µ,λ,η,δ)
Input: BK: background knowledge, P: template predicates
modes: mode declarations, maxLength: max. number of hyperedges in a path
µ: evaluation threshold, λ, η, δ: AdaGrad parameters

1: Partition BK into A and B and create templates T from A
2: Initialize resulting theory R0 = B and weight vector w0 = initialValue
3: for t = 1 to T do
4: Receive a training example Dt=(xt,yt)
5: Predict yP

t = argmaxy∈Y〈w,n(xt,y)〉 and compute ∆yt = yt \ yP
t

6: if ∆yt 6= ∅ then
7: HG = ConstructHG

(
(xt,yt),modes,P

)
. Reduced hypegraph construction

8: paths= ∅
9: for all incorrectly predicted query atom q ∈ ∆yt do

10: for all template Ti ∈ T do
11: I = InitialSet

(
q, (xt,yt), Ti

)
12: V = ∅ . A set of constants
13: for all τ(k1, . . . , kn) ∈ I do
14: for all ki ∈ {k1, . . . , kn} do
15: if isInputOrOutputVar(ki,modes) then
16: V = V ∪ ki
17: ModeGuidedSearch

(
q,V, HG,modes,maxLength,paths

)
18: DCt = CreateDefinitions(DCt−1,paths,modes)
19: Ct = CreateClauses(DCt,modes)
20: for i = 1 to |Ct| do
21: if ∆nCt,i ≤ µ then Remove def. clause dci corresponding to Ct,i from DCt
22: Rt = B ∪ CreateClauses(DCt,modes)
23: for i = 1 to |Rt| do
24: if ∃ ci,t−1 ∈ Rt−1, ci,t ∈ Rt : ci,t−1 θ-subsumes ci,t then wi,t=wi,t−1
25: else wi,t=initialValue

26: AdaGrad(wt,∆nRt , λ, η, δ)

3

