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Abstract. Most event recognition approaches in sensor environments
are based on manually constructed patterns for detecting events, and
lack the ability to learn relational structures in the presence of uncer-
tainty. We describe the application of OSLα, an online structure learner
for Markov Logic Networks that exploits Event Calculus axiomatizations,
to event recognition for traffic management. Our empirical evaluation is
based on large volumes of real sensor data, as well as synthetic data gen-
erated by a professional traffic micro-simulator. The experimental results
demonstrate that OSLα can effectively learn traffic congestion definitions
and, in some cases, outperform rules constructed by human experts.
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1 Introduction

Many real-world applications are characterized by both uncertainty and rela-
tional structure. Regularities in these domains are hard to identify manually,
and thus automatically learning them from data is desirable. One framework
that concerns the induction of probabilistic knowledge by combining the powers
of logic and probability is Markov Logic Networks (MLNs) [12]. Structure learn-
ing approaches that focus on MLNs have been successfully applied to a variety
of applications where uncertainty holds. However, most of these approaches are
batch and cannot handle large training sets, due to their requirement to load all
data in memory for inference in each learning iteration.

Recently, we proposed the OSLα [9] online structure learner for MLNs, which
extends OSL [7] by exploiting a given background knowledge to effectively con-
strain the space of possible structures during learning. The space is constrained
subject to the characteristics imposed by the rules governing a specific task,
herein stated as axioms. As a background knowledge we are employing MLN−EC [14],
a probabilistic variant of the Event Calculus [8, 10] for event recognition.

In event recognition [3, 1] the goal is to recognize composite events (CE)
of interest given an input stream of simple derived events (SDEs). CEs can be
defined as relational structures over sub-events, either CEs or SDEs, and capture
the knowledge of a target application. Due to the dynamic nature of real-world
applications, the CE definitions may need to be refined over time or the current
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knowledge may need to be enhanced with new definitions. Manual curation of
event definitions is a tedious and cumbersome process, and thus machine learning
techniques to automatically derive the definitions are essential.

We applied OSLα to learning definitions for traffic incidents using over 3GiB
of real data from sensors mounted on a 12km stretch of the Grenoble ring road,
provided in the context of the SPEEDD project1. The goal of SPEEDD is to
develop a system for proactive, event-based decision-making, where decisions
are triggered by forecast events. To allow for event recognition and forecasting,
OSLα is employed to construct and refine the necessary CE definitions. Due to the
high volume of the dataset, the learning process must employ an online strategy.
To evaluate further the predictive accuracy of OSLα, we employed a synthetic
dataset generated by a professional traffic micro-simulator [13], developed by
domain experts to allow for the systematic testing of the SPEEDD components.

The remainder of the paper is organized as follows. Section 2 presents OSLα,
while Section 3 describes the application of OSLα to the traffic domain. Section
4 summarizes the presented work and outlines further research directions.

2 OSLα: An Online Structure Learner using Background
Knowledge Axiomatization

OSLα extends OSL by exploiting a given background knowledge. Figure 1 presents
the components of OSLα. The background knowledge consists of the MLN−EC ax-
ioms (i.e., domain-independent rules) and an already known (possibly empty) hy-
pothesis (i.e., set of clauses). Each axiom contains query predicates HoldsAt ∈ Q
that consist the supervision, and template predicates InitiatedAt,
TerminatedAt ∈ P that specify the conditions under which a CE starts and
stops being recognized. The latter form the target CE definitions that we want
to learn. OSLα exploits these axioms in order to create mappings of supervision
predicates into template predicates and search only for explanations of these
template predicates. Upon doing so, OSLα does not need to search over time
sequences; instead it only needs to find appropriate bodies over the current
time-point for the following definite clauses:

InitiatedAt(f , t)⇐ body

TerminatedAt(f , t)⇐ body

Given the MLN−EC axioms, OSLα constructs a set T that provides mappings
of its axioms to the template predicates in P that appear in their bodies. For
instance, axiom (1) of T

HoldsAt(f , t+1)⇐ InitiatedAt(f , t) ∧ Next(t , t+1 ) (1)

will be mapped to the template predicate InitiatedAt(f, t) since the aim is to
construct a rule for this predicate. The set T is used during the search for struc-
tures (relational pathfinding) to find an initial search set I of ground template

1 https://speedd-project.eu
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Learnt Hypothesis Ht:

0.4 HoldsAt(congestion(lid), t+1)⇐
HappensAt(fast Slt20(lid), t)∧
HappensAt(fast Ogt45(lid), t)

+

MLN−EC Axioms:
HoldsAt(f, t+1)⇐

InitiatedAt(f, t)

HoldsAt(f, t+1)⇐
HoldsAt(f, t) ∧
¬TerminatedAt(f, t)

¬HoldsAt(f, t+1)⇐
TerminatedAt(f, t)

¬HoldsAt(f, t+1)⇐
¬HoldsAt(f, t) ∧
¬InitiatedAt(f, t)

OSLα

Micro-Batch Dt

HappensAt(fast Slt25(53708), 99)
HappensAt(fast Ogt55(53708), 99)
HappensAt(slow Slt15(53708), 99)
HappensAt(slow Ogt65(53708), 99)
Next(99, 100)
HoldsAt(congestion(53708), 100)
. . .

Micro-Batch Dt+1

HappensAt(fast Sgt70(53708), 200)
HappensAt(fast Olt25(53708), 200)
HappensAt(slow Sgt40(53708), 200)
HappensAt(slow Olt18(53708), 200)
Next(200, 201)
¬HoldsAt(congestion(53708), 201)
. . .

. . .

. . .

. . .
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Paths to
Clauses
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Fig. 1: The procedure of OSLα.

predicates, and search the space of possible structures for specific bodies of the
definite clauses.

At any step t of the online procedure, a training example (micro-batch) Dt

arrives containing simple derived events (SDEs), e.g. a fast lane in a highway has
average speed less than 25 km/hour and sensor occupancy greater than 55%. Dt

is used together with the already learnt hypothesis to predict the truth values
yP
t of the composite events (CEs) of interest. This is achieved by (maximum

a posteriori) MAP inference based on LP-relaxed Integer Linear Programming
[6]. Then OSLα receives the true label yt and finds all ground atoms that are
in yt but not in yP

t , denoted as ∆yt = yt \ yP
t . Hence, ∆yt contains the false

positives/negatives of the inference step. Given Dt, OSLα constructs a hyper-
graph that represents the space of possible structures as graph paths. Constants
appear in the graph as nodes and true ground atoms as hyperedges that connect
the nodes appearing as its arguments.

Then for all incorrectly predicted CEs in ∆yt, OSLα uses the set T to find
the corresponding ground template predicates for which the axioms belong-
ing in T are satisfied by the current training example. Consider, for instance,
that one of these is axiom (1), and that we have predicted that the ground
atom HoldsAt(CE, 5) is false (false negative). OSLα substitutes the constants of
HoldsAt(CE, 5) into axiom (1). The result of the substitution will be the follow-
ing partially ground axiom:

HoldsAt(CE, 5) ⇐ Next(t , 5) ∧ InitiatedAt(CE, t) (2)

Since t represents time-points and Next describes successive time-points, there
will be only one true grounding of Next(t , 5) in the training data, having as
argument the constant 4. OSLα substitutes the constant 4 into axiom (2) and
adds InitiatedAt(CE, 4) to the initial search set I. This procedure essentially
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reduces the hypergraph to contain only ground atoms explaining the template
predicates. The pruning resulting from the template guided search is essential
for learning in temporal domains.

For all ground template predicate in I, the hypergraph is searched, guided by
path mode declarations [7] using relational pathfinding [11] up to a predefined
length, for definite clauses explaining the CEs. The search procedure recursively
adds to the path hyperedges (i.e., ground atoms) that satisfy the mode declara-
tions. The search ends when the path reaches the specified length or when no
new hyperedges can be added.

The paths discovered during the search correspond to conjunctions of true
ground atoms connected by their arguments and can be generalized into definite
clauses by replacing constants in the conjunction with variables. Then, these
conjunctions are used as a body to form definite clauses using as head the tem-
plate predicate present in each path. The resulting set of formulas is converted
into clausal normal form and evaluated.

Evaluation takes place for each clause c individually. The difference between
the number of true groundings of c in the ground-truth world (xt,yt) and those in
predicted world (xt,y

P
t ) is then computed (note that yP

t was predicted without
c). Only clauses whose difference in the number of groundings is greater than or
equal to a predefined threshold µ will be added to the MLN:

∆nc = nc(xt,yt)− nc(xt,y
P
t ) ≥ µ (3)

The intuition behind this measure is to add to the hypothesis clauses whose
coverage of the ground-truth world is significantly (according to µ) greater than
that of the clauses already learned. Finally, the weights of the retained clauses
are then optimized by the AdaGrad online learner [5], the weighted clauses are
appended to the current hypothesis Ht, and the procedure is repeated for the
next training example Dt+1.

Our implementations of OSLα, AdaGrad, and MAP inference based on LP-
relaxed Integer Linear Programming, are contributed to LoMRF2, an open-
source implementation of MLNs written in Scala. LoMRF enables knowledge
base compilation, parallel and optimized grounding, inference and learning.

3 Empirical Evaluation

We applied OSLα to traffic management using real data from magnetic sensors
mounted on the southern part of the Grenoble ring road (Rocade Sud), that
links the city of Grenoble from the south-west to the north-east. In addition to
sustaining local traffic, this road has a major role, since it connects two highways:
the A480, which goes from Paris and Lyon to Marseilles, and the A41, which goes
from Grenoble to Switzerland. Furthermore, the mountains surrounding Greno-
ble prevent the development of new roads, and also have a negative impact on
pollution dispersion, making the problem of traffic regulation on this road even

2 https://github.com/anskarl/LoMRF
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Fig. 2: Location 353708, fast lane: average speed (left) and occupancy (right).
The blue points indicate the average speed (occupancy), the green windows
indicate the congestion annotated by human experts, and red (dashed) windows
the potentially missing annotations.

more crucial [4]. The dataset was made available by CNRS-Grenoble, our part-
ner in the SPEEDD project, and consists of approximately 3.3GiB of sensor
readings (one month data). Sensors are placed in 19 collection points along a
12km stretch of the highway. Each collection point has a sensor per lane. Sensor
data are collected every 15 seconds, recording the total number of vehicles pass-
ing through a lane, average speed and sensor occupancy. Annotations of traffic
congestion are provided by human traffic controllers, but only very sparsely.

To deal with this issue, and test further OSLα, we used a synthetic dataset
generated by a professional traffic micro-simulator [13], developed in the context
of SPEEDD. The simulator is based on AIMSUN3 — a widely used transport
modeling software that uses a microscopic model simulating individual vehi-
cle movement, based on statistical laws from car-following and lane-changing
theories. Typically, vehicles enter a transportation network using a statistical
distribution of arrivals. The microscopic model incorporates sub-models for ac-
celeration, speed adaptation, lane-changing, etc, to describe how vehicles move,
interact with each other and the infrastructure. The synthetic dataset concerns
the same location — the Rocade Sud — and consists of 6 simulations of one
hour each (≈ 18.6MiB). The simulator has been calibrated using real traffic
data. Unlike the real dataset, artificial sensors exist in 98 collection points of
the highway, there is no distinction between (fast, queue, etc) lanes, and sensor
measurements additionally include vehicle density. Furthermore, the synthetic
dataset is much better annotated than the real dataset.

3.1 Learning Challenges

Both datasets used for learning traffic congestions exhibit several challenges.
Concerning the real dataset, the first challenge is its size, making the use of
batch learners, as well as online learners such as OSL that cannot make use

3 http://www.aimsun.com/
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Fig. 3: Location 347549: fast lane (left) vs queue lane (right). The blue points in-
dicate the average speed while green windows indicate the congestion annotated
by human experts.

of background knowledge, prohibitive. For instance, in the empirical evaluation
presented in [9], OSL was tested on a much smaller training set (≈ 2.6MiB)
and required ≈ 25 hours to process just 40% of the data. Second, as mentioned
above, traffic congestion annotation is largely incomplete, leading to the incorrect
penalization of good rules. This issue is illustrated in Figure 2.

Third, the quality of information of each sensor differs considerably. This
issue is illustrated in Figure 3, that displays the average speed of the fast lane
and the queue lane at the same location, as well as the congestion annotation.
Figure 3 shows that the information provided by the sensors of the queue lane
is largely uninformative.

Fourth, generic, location- and lane-agnostic rules are not sufficient. Consider,
for example, a simple rule defining traffic congestion for any possible location
regardless of the lane type:

InitiatedAt(congestion(lid), t)⇐
HappensAt(aggr(lid , occupancy , avgspd), t)∧
avgspd < 50 ∧ occupancy > 25

According to the above rule, a congestion in some location is said to be initiated
if the average speed is below 50 km/hour and the occupancy is greater than
25%. Similar rules, not shown here to save space, terminate the recognition of
congestion. The optimization of the weights of these rules had large fluctuations
along the learning steps, leading to zero crossings, indicating that the rules cor-
rectly capture the concept of traffic congestion in a few locations, and completely
fail in others. To deal with this issue, location- and lane-specific rules must be
constructed.

On the other hand, the synthetic dataset introduces different types of chal-
lenge. Density and occupancy measurements are mostly noisy, while there are a
lot of zero values in all sensor measurements, leading to detection errors. These
issues are illustrated in Figure 4. Furthermore, although supervision is more
complete compared to the real dataset, there are cases of missing annotation.
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Fig. 4: Simulation 2 at location 1320: average speed (left), occupancy (middle)
and density (right). The green windows indicate the congestion supervision.

3.2 Experimental Setup and Results

Sensor readings constitute the simple derived events (SDEs), while traffic con-
gestion is the target CE. The data are stored in a PostgreSQL database and
the training sequence for each micro-batch, as shown in Figure 1, is constructed
dynamically by querying the database. A set of first-order logic functions is
used to discretize the numerical data (speed, occupancy) and produce input
events such as, for instance, HappensAt(fast Slt55(53708), 100), representing
that the speed in the fast lane of location 53708 is less than 55 km/hour at time
100. The CE supervision indicates when a traffic congestion holds in a specific
location. Each training sequence is composed of input SDEs (HappensAt) over
the first-order logic functions and the corresponding CE annotations (HoldsAt).
The total length of the training sequence in the real data case consists of 172, 799
time-points, and we consider only SDEs from fast lanes. In the synthetic data
the total training sequence length consists of 238 time-points and there is no
distinction between lanes.

In the experiments presented below, we compare:

– OSLα starting with an empty hypothesis.

– OSLα starting with manually constructed traffic congestion definitions devel-
oped in collaboration with domain experts.

– The AdaGrad [5] online weight learner operating on the aforementioned
hand-crafted definitions.

The evaluation results were obtained using MAP inference [6] and are pre-
sented in terms of F1 score. In the real dataset, all reported statistics are micro-
averaged over the instances of recognized CEs using 10-fold cross validation over
the entire dataset, using varying batch sizes. At each fold, an interval of 17, 280
time-points was left out and used for testing. In the synthetic data, the reported
statistics are micro-averaged using 6-fold cross validation over 6 simulations by
leaving one out for testing, using varying batch sizes. The experiments were per-
formed on a computer with an Intel i7 4790@3.6GHz processor (4 cores and 8
threads) and 16GiB of RAM, running Ubuntu 16.04.
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Fig. 5: Real dataset: F1 score (left) and average batch processing time (right)
for OSLα starting with an empty hypothesis (top), OSLα starting with manually
constructed rules (middle) and AdaGrad operating on the manually constructed
rules (bottom). In the left figures, the number of batches (see the Y axes) refers
to number of learning iterations.

Real Dataset. Figure 5 presents the experimental results on the real dataset.
AdaGrad and OSLα (when a starting with a non-empty hypothesis) were given
location-specific rules defining traffic congestion in terms of speed and occupancy.
The predictive accuracy of the learned models, both for OSLα and AdaGrad, is
low. This arises mainly from the largely incomplete supervision. In OSLα, the pre-
dictive accuracy increases (almost) monotonically as the learning iterations in-
crease. On the contrary, the accuracy of AdaGrad is more or less constant. OSLα,
starting with or without the manually constructed rules, outperforms AdaGrad
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in terms of accuracy. (OSLα starting without (respectively with) the hand-crafted
rules achieves a 0.64 (resp. 0.61) F1 score, while the best score of AdaGrad is
0.59.) This is a notable result. The aid of human knowledge can help OSLα —
see the two middle points (batch size/learning iterations) in the two top left dia-
grams of Figure 5. However, OSLα achieves the best score when starting with an
empty hypothesis. The absence of proper supervision penalizes the hand-crafted
rules, compromising the accuracy of the learning techniques that use them. OSLα
starting with an empty hypothesis is not penalized in this way, and is able to
construct rules with a better fit in the data, given enough learning iterations.
For some locations of the motorway, OSLα has constructed rules with different
thresholds for speed and occupancy than those of the hand-crafted rules.

With respect to efficiency (see the right diagrams of Figure 5), unsurprisingly
AdaGrad is faster and scales better to the increase in the batch size. At the same
time, OSLα processes data batches efficiently — for example, OSLα takes less than
10 seconds to process a 50-minute batch including 4, 220 SDEs.

Synthetic Dataset. To test the behavior of OSLα under better supervision,
we made use of a synthetic dataset produced by a professional traffic micro-
simulator. The dataset concerns the same location: the southern part of the
Grenoble ring road. Figure 6 presents the experimental results using only SDEs
for average speed. As mentioned in Section 3.1, density and occupancy mea-
surements are mostly noisy in the synthetic data. Consequently, AdaGrad and
OSLα (when a starting with a non-empty hypothesis) were given rules defin-
ing traffic congestion only in terms of speed. These rules were location-agnostic
since the artificial sensors do not distinguish between lanes. Not surprisingly, the
predictive accuracy of the learned models in these experiments is much higher
as compared to real dataset. Moreover, the accuracy of OSLα and AdaGrad is
affected mostly by the batch size: accuracy increases as the batch size increases.
The synthetic dataset is smaller than the real dataset and thus, as the batch
size decreases, the number of learning iterations is not large enough to improve
accuracy. The best performance of OSLα and AdaGrad is almost the same (ap-
proximately 0.89). In other words, OSLα starting with an empty hypothesis can
match the performance of techniques taking advantage of rules crafted by human
experts. This is another notable result.

The right diagrams of Figure 6 report the average batch processing times.
These diagrams verify that AdaGrad is more efficient than OSLα, and that OSLα
achieves a good performance, processing batches much faster than their duration.
For example, OSLα takes less than 3 seconds to process a 25-minute batch.

To evaluate further the behavior of OSLα, we performed additional experi-
ments using the synthetic dataset, this time keeping the noisy occupancy mea-
surements. The aim of the experiments was to test OSLα in a well-annotated
setting with noisy SDEs. The evaluation results are shown in Figure 7. The
hand-crafted rules defining traffic congestion combined speed with occupancy.
Figure 7 shows that the noisy occupancy readings have affected the accuracy
of OSLα and AdaGrad. However, OSLα starting with the manually constructed
rules is affected much less, outperforming significantly both OSLα starting with



10

an empty hypothesis and AdaGrad. OSLα has augmented the hand-crafted rules
with additional clauses that focus on speed, and reduced the weight values of
rules combining speed with occupancy. This way, OSLα was able to minimize the
effect of noisy SDEs.
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Fig. 6: Synthetic dataset with speed measurements: F1 score (left) and average
batch processing time (right) for OSLα starting with an empty hypothesis (top),
OSLα starting with manually constructed rules (middle) and AdaGrad operating
on the manually constructed rules (bottom).

For completeness, the right diagrams of Figure 7 report the average batch
processing times of OSLα and AdaGrad.
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Fig. 7: Synthetic dataset with speed and occupancy measurements: F1 score (left)
and average batch processing time (right) for OSLα starting with an empty hy-
pothesis (top), OSLα starting with manually constructed rules (middle) and Ada-
Grad operating on the manually constructed rules (bottom).

4 Summary and Further Work

We presented the application of OSLα, a recently proposed structure learner
for Markov Logic Networks that exploits background knowledge in the form of
Event Calculus theories, to complex event recognition for traffic management.
We performed an extensive empirical evaluation using over 3GiB of real data,
allowing us to test the scalability of our approach, and a synthetic dataset that
enabled us to test systematically the predictive accuracy of the structure learner.
The experimental evaluation showed that OSLα, without the aid of hand-crafted
knowledge, performs at least as good as the AdaGrad weight learner operating on
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rules constructed by human experts. The aid of hand-crafted rules allows OSLα
to outperform significantly AdaGrad in the presence of noisy SDEs. With respect
to efficiency, OSLα processes data batches much faster than their duration.

There are several directions for further work. We aim to extend OSLα in order
to handle effectively the absence of annotation. We are also performing a human
factors evaluation involving traffic controllers — see [2] for the initial results.
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