Online Learning of Weighted Relational Rules for
Complex Event Recognition

Nikos Katzouris', Evangelos Michelioudakis'+2, Alexander Artikis'»3, and Georgios
Paliouras’

1 National Center for Scientific Research (NCSR) “Demokritos”, Athens, Greece
2 National and Kapodistrian University of Athens, Athens, Greece
University of Pireaus, Pireaus, Greece
{nkatz,a.artikis,paliourg}@Riit.demokritos.gr

Abstract. Systems for symbolic complex event recognition detect occurrences
of events in time using a set of event definitions in the form of logical rules. The
Event Calculus is a temporal logic that has been used as a basis in event recogni-
tion applications, providing among others, connections to techniques for learning
such rules from data. We advance the state-of-the-art by combining an existing
online algorithm for learning crisp relational structure with an online method for
weight learning in Markov Logic Networks (MLN). The result is an algorithm
that learns complex event patterns in the form of Event Calculus theories in the
MLN semantics. We evaluate our approach on a challenging real-world applica-
tion for activity recognition and show that it outperforms both its crisp predeces-
sor and competing online MLN learners in terms of predictive performance, at
the price of a small increase in training time.

Keywords: Online Structure and Weight Learning - Markov Logic Networks -
Event Calculus.

1 Introduction

Complex event recognition systems [7] process sequences of simple events, such as sen-
sor data, and recognize complex events of interest, i.e. events that satisfy some temporal
pattern. Systems for symbolic event recognition [3] typically use a knowledge base of
first-order rules to represent complex event patterns. Learning such patterns from data
is highly desirable, since their manual development is usually a difficult and error-prone
task. The Event Calculus (EC) [23] is a temporal logical formalism that has been used
as a basis in event recognition applications [2], providing among others, direct connec-
tions to machine learning, via Inductive Logic Programming (ILP) [8] and Statistical
Relational Learning (SRL) [9].

Event recognition applications typically deal with noisy data streams [1]. Algo-
rithms that learn from such streams are required to work in an online fashion, building
a model with a single pass over the input [14]. Although a number of online relational
learners have been proposed [12, 31, 18], learning theories in the EC is a challenging
task that most relational learners, inluding the aforementioned ones, cannot fully un-
dertake [28, 19]. As a result, two online algorithms have been proposed, both capable

2 N. Katzouris et al.

of learning complex event patterns in the form of EC theories, from relational data
streams. The first, OLED (Online Learning of Event Definitions) [21], adapts the Ho-
effding bound-based [16] framework of [10] for online decision tree learning to an
ILP setting. The second algorithm, OSL« (Online Structure Learning with Background
Knowledge Axiomatization) [27], builds on the method of [18] for learning structure
and weights in Markov Logic Networks (MLN) [29], towards online learning of EC
theories in the MLN semantics.

Both these algorithms have shortcomings. OLED is a crisp learner, therefore its per-
formance could be improved via SRL techniques that combine logic with probability.
On the other hand, OSL« uses an efficient online weight learning technique, based on
the AdaGrad algorithm [13], but its structure learning component is sub-optimal: It
tends to generate large sets of rules, many of which are of low heuristic value with
a marginal contribution to the quality of the learned model. The maintenance cost of
such large rule sets during learning results in poor efficiency, with no clear gain in the
predictive accuracy, while it also negatively affects model interpretability.

In this work we present a new algorithm that attempts to combine the best of
these two learners: OLED’s structure learning strategy, which is more conservative than
OSLea’s and typically explores much smaller rule sets, with OSLa’s weight learning
technique. We show that the resulting algorithm outperforms both its predecessors in
terms of predictive performance, at the price of a tolerable increase in training time. We
empirically validate our approach on a benchmark dataset of activity recognition.

The rest of this paper is structured as follows. In Section 2 we discuss related work,
while in Section 3 we present some background material. In Section 3.1 we present
OSL« and discuss its main limitations and in Section 4 we describe our proposed online
structure and parameter learning method, after a brief presentation of the crisp version
of OLED. In Section 5 we present our experimental evaluation, while in Section 6 we
discuss some prospects of future work and conclude.

2 Related Work

Machine learning techniques for event recognition are attracting attention in the Com-
plex Event Processing community [26]. However, existing approaches are relatively
ad-hoc and they have several limitations [19], including limited support for background
knowledge utilization and uncertainty handling. In contrast, we adopt an event recog-
nition framework that allows access to well-established (statistical) relational learning
techniques [8, 9], which can overcome such limitations. Moreover, using the EC allows
for efficient event recognition via dedicated reasoners, such as RTEC [2].

However, learning with the EC is challenging for most ILP and SRL algorithms.
A main reason for that is the non-monotonicity of the Negation as Failure operator
that the EC uses for commonsense reasoning, which makes the divide-and-conquer-
based search of most ILP algorithms inappropriate [28, 19, 20]. Non-monotonic ILP
algorithms can handle the task [28, 5], but they scale poorly, as they learn whole theories
from the entirety of the training data, while improvements to such algorithms that allow
some form of incremental processing to enhance efficiency [4, 24] cannot handle data

Online Learning of Weighted Relational Rules for Complex Event Recognition 3

arriving over time. Contrary to such approaches, OLED, the ILP algorithm we build
upon, scales adequately and learns online [21].

A line of related work tries to “upgrade” non-monotonic ILP learners to an SRL set-
ting, via weight learning techniques with probabilistic semantics [6, 11]. However, the
resulting algorithms suffer from the same limitations, related to scalability, as their crisp
predecessors. In the field of Markov Logic Networks (MLN), which is the SRL frame-
work we adopt, OSL« is the sole algorithm capable of learning structure and weights
for EC theories.

Online learning settings, as the one we assume in this work, are under-explored both
in ILP and in SRL. A few ILP approaches have been proposed. In [12] the authors pro-
pose an online algorithm, which generates a rule from each misclassified example in a
stream, aiming to construct a theory that accounts for all the examples in the stream. In
[31] the authors propose an online learner based on Aleph3 and Winnow [25]. The algo-
rithm maintains a set of rules, corresponding to Winnow’s features. Rules are weighted
and are used for the classification of incoming examples, via the weighted majority of
individual rule verdicts for each example, while their weights are updated via Winnow’s
mistake-driven weight update scheme. New rules are greedily generated by Aleph from
missclassified examples. A similar approach is put forth by OSL [18], an online learner
for MLN, which OSL« builds upon to allow for learning with the EC. OSL greedily
generates new rules to account for misclassified examples that stream in, and then re-
lies on weight learning to identify which of these rules are relevant. Common to these
online learners is that they tend to generate unnecessarily large rule sets, which are hard
to maintain. This is precisely the issue that we address in this work.

3 Background

We assume a first-order language, where predicates, terms, atoms, literals (possibly
negated atoms), rules (clauses) and theories (collections of rules) are defined as in [9],
while not denotes Negation as Failure. A rule is represented by o < 61, . .., d,,, where
« is an atom, (the head of the rule), and 4y, . . ., §,, is a conjunction of literals (the body
of the rule). A term is ground if it contains no variables. We follow [9] and adopt a
Prolog-style syntax. Therefore, predicates and ground terms in logical expressions start
with a lower-case letter, while variable terms start with a capital letter.

The Event Calculus (EC) [23] is a temporal logic for reasoning about events and
their effects. Its ontology consists of time points (integer numbers); fluents, i.e. prop-
erties that have different values in time; and events, i.e. occurrences in time that may
alter fluents’ values. The axioms of the EC incorporate the commonsense law of inertia,
according to which fluents persist over time, unless they are affected by an event. We
use a simplified version of the EC that has been shown to suffice for event recognition
[2]. The basic predicates and its domain-independent axioms are presented in Table 1(a)
and (b) respectively. Axiom (1) in Table 1(b) states that a fluent F' holds at time 7" if it
has been initiated at the previous time point, while Axiom (2) states that F' continues to
hold unless it is terminated. Definitions for initiatedAt/2 and terminatedAt/2 predicates
are given in an application-specific manner by a set of domain-specific axioms.

Shttp://www.cs.ox.ac.uk/activities/machinelearning/Aleph/aleph

4 N. Katzouris et al.

()

Predicate
happensAt(E, T')
initiatedAt(F, T')

terminatedAt(F, T')

holdsAt(F, T)

Meaning

Event E occurs at time 7.

At time 7', a period of time for
which fluent F' holds is initiated.
At time 7', a period of time for

which fluent F' holds is terminated.

Fluent F' holds at time 7".

(b)

Domain-Independent Axioms

holdsAt(F, T + 1) <+ (1)
initiatedAt(F, T')

holdsAt(F, T + 1) + (2)
holdsAt(F, T,
not terminatedAt(F, T")

(©)

Narrative for time 1:

happensAt(walk(id;), 1).
happensAt(walk(ids), 1).
holdsAt(coords(id;, 201, 454), 1).
holdsAt(coords(ids, 230, 440), 1)
holdsAt(direction(id;, 270), 1)
holdsAt(direction(idzg, 270), 1)

Narrative for time 2:

happensAt(walk(id;), 2).
happensAt(walk(ids), 2).

holdsAt(coords(id;, 201, 454), 2).
holdsAt(coords(idg, 227, 440), 2)
holdsAt(direction(id;, 275), 2)

(d)

Two Domain-specific axioms:

initiatedAt(move(X,Y), T) <
happensAt(walk(X), T),
happensAt(walk(Y), T),
distLessThan(X,Y, 25, T),
dirLessThan(X, Y, 45, T)

holdsAt(direction(idz, 278), 2)

terminatedAt(move(X,Y), T) «+
happensAt(inactive(X), T),
distMoreThan(X,Y, 30, T)

Annotation for time 2:
holdsAt(move(idy, idz2), 2)

Annotation for time 1:
not holdsAt(mowve(idy, idz), 1)

Table 1: (a), (b) The basic predicates and the domain-independent axioms of EC. (¢) Example
data from activity recognition. For example, at time point 1 person with id; is walking, her
(X,Y) coordinates are (201,454) and her direction is 270°. The annotation for the same time
point states that persons with id; and ids are not moving together, in contrast to the annotation
for time point 2. (d) An example of two domain-specific axioms in the EC. E.g. the first clause
dictates that moving together between two persons X and Y is initiated at time 7" if both X and Y
are walking at time 7', their euclidean distance is less than 25 pixel positions and their difference
in direction is less than 45°. The second clause dictates that moving together between X and Y’
is terminated at time 7" if one of them is standing still at time 7" (exhibits an inactive behavior)
and their euclidean distance at 7' is greater that 30.

As a running example we use the task of activity recognition, as defined in the
CAVIAR project*. The CAVIAR dataset consists of 28 videos of actors performing a
set of activities. Manual annotation (performed by the CAVIAR team) provides ground
truth for two activity types. The first type corresponds to simple events and consists
of the activities of a person at a certain video frame/time point, such as walking, or
standing still. The second activity type corresponds to complex events and consists of
activities that involve more than one person, e.g. two people meeting each other, or
moving together. The goal is to recognize complex events as combinations of simple
events and additional contextual knowledge, such as a person’s direction and position.

Table 1(c) presents some example CAVIAR data, consisting of a narrative of simple
events in terms of happensAt/2, expressing people’s short-term activities, and context
properties in terms of holdsAt/2, denoting people’ coordinates and direction. Table 1(c)
also shows the annotation of complex events (long-term activities) for each time-point
in the narrative. Negated complex events’ annotation is obtained via the closed-world

“http://homepages.inf.ed.ac.uk/rbf/CAVIARDATAL/

Online Learning of Weighted Relational Rules for Complex Event Recognition 5

assumption (although both positive and negated annotation atoms are presented in Table
1(c), to avoid confusion). Table 1(d) presents two domain-specific axioms in the EC.
The learning task we address in this work is to learn definitions of complex events, in
the form of domain-specific axioms in the EC, i.e. initiation and termination conditions
of complex events, as in Table 1(d). The training data consists of a set of Herbrand
interpretations, i.e. sets of narrative atoms, annotated by complex event instances, as in
Table 1(c). Given such a training set Z and some background knowledge B, the goal
is to find a theory H that accounts for as many positive and as few negative examples
as possible, throughout Z. Given an interpretation I € Z, a positive (resp. negative)
example is a complex event atom « € I (resp. o ¢ I). We assume an online learning
setting, in the sense that a learning algorithm is allowed only a single-pass over Z.

3.1 Online Learning of Markov Logic Networks with OSL«

OSLa [27] builds on the OSL [18] algorithm for online learning of Markov Logic Net-
works (MLN). An MLN is a set of weighted first-order logic rules. Along with a set of
domain constants, it defines a ground Markov network containing one feature for each
grounding of a rule in the MLN, with the corresponding weight. Learning an MLN
consists of learning its structure (the rules in the MLN) and their weights.

OSLa works by constantly updating the rules in an MLN in the face of new interpre-
tations that stream-in, by adding new rules and updating the weights of existing ones. At
time ¢, OSL receives an interpretation /; and uses its current hypothesis, Hy, to “make
a prediction”, i.e. to infer the truth values of query atoms, given the evidence atoms
in I;. In the learning problem that we address in this work, query atoms are instances
of initiatedAt/2 and terminatedAt/2 predicates, the “target” predicates defining complex
events, while evidence atoms are instances of predicates that declare simple events’
occurrences, or other contextual knowledge, like happensAt/2 and distLessThan /4 re-
spectively (see also Table 1(c)).

To infer the query atoms’ truth values given the interpretation I;, OSLa uses Maxi-
mum Aposteriori (MAP) inference [18], which amounts to finding the truth assignment
to the query atoms that maximizes the sum of the weights of H;’s rules satisfied by I;.
This is a weighted MAX-SAT problem, whose solution OSL« efficiently approximates
using LP-relaxed Integer Linear Programming, as in [17]. The inferred truth values of
the query atoms, resulting from MAP inference may differ from the true ones, dictated
by the annotation in /;. The mistakes may be either False Negatives (FNs) or False Pos-
itives (FPs). Since FNs are query atoms which are not entailed by an existing rule in the
inferred interpretation, in the next step OSLa constructs a set of new rules as a remedy.
To this end, OSL« represents the current interpretation I; as a hypergraph with the con-
stants of I; as the nodes and each true ground atom ¢ in I; as a hyperedge connecting
the nodes (constants) that appear as §’s arguments. Each inferred FN query atom « is
used as a “seed” to generate new rules, by finding all paths in the hypergraph, up to a
user-defined maximum length, that connect a’s constants. Each such path consists of
hyperedges, corresponding to a conjunction of true ground atoms connected by their
arguments. The path is turned into a rule with this conjunction in the body and the seed
FN atom in the head, and a lifted version of this rule is obtained by variabilizing the

6 N. Katzouris et al.

ground arguments. By construction, each such rule logically entails the seed FN atom
it was generated from.

This technique of relational pathfinding may generate a large number of rules from
each inferred FN query atom, and many of these rules are not useful. Thus, OSL« relies
on L;-regularized weight learning, which in the long run, pushes the weights of non-
useful rules to zero. Weight learning is also OSLa’s way to handle FP query atoms in
the inferred state, which are due to erroneously satisfied rules in the current theory H;.
These rules are penalized by reducing their weights. OSL« uses an AdaGrad-based [13]
weight learning technique, which supports L -regularization.

AdaGrad is a subgradient-based method for online convex optimization, i.e. at each
step it updates a feature vector, based on the subgradient of a convex loss function of
the features. Seeing the rules in an MLN theory H = {rq,...,7,} as the feature vector
that needs to be optimized, the authors in [18] use a simple variant of the hinge-loss as a
loss function, whose subgradient is the vector —(Agy, . .. Agy,), where Ag; denotes the
difference between the true groundings of the ¢-th rule in the actual true state and the
MAP-inferred state respectively. Based on this difference, AdaGrad updates the weight
w! of the i-th rule in the theory at time ¢ by:

Wit = sign(w! — gﬁ Agh) maz {0, |w! — C%.Agﬂ - A%} (1)

where ¢-superscripts in terms denote the respective values at time ¢, 7 is a learning rate

parameter, \ is a regularization parameter and C! = § + \/2321(49'3)2 is a term
that expresses the rule’s quality so far, as reflected by the accumulated sum of Ag;’s,
amounting to the i-th rule’s past mistakes (plus a § > 0 to avoid division by zero in
n/C?). The C! term gives an adaptive flavour to the algorithm, since the magnitude of a
weight update via the term |w! — C%Agﬂ in Equation (1), is affected by the rule’s pre-
vious history, in addition to its current mistakes, expressed by Ag!. The regularization
term in Equation (1),)\%, is the amount by which the i-th rule’s weight is discounted

when Ag! = 0. This is to eventually push to zero the weights of irrelevant rules, which
have very few, or even no groundings in the training interpretations.

In contrast to its predecessor, OSL, OSL« uses specialized techniques for pruning
large parts of the hypergraph structure to enhance efficiency when learning with the EC.
However, its rule generation technique remains an important bottleneck. Repeatedly
searching for paths in the hypergraph structure is expensive in its own right, but it also
tends to blindly generate large sets of rules, which, in turn, increases the cost of MAP
inference during learning.

4 Learning Weighted Rules with WoLED

Aiming to improve the efficiency of online learning with the EC in MLN, we propose
WOoLED (Weighted Online Learning of Event Definitions), an extension of the OLED
crisp online ILP learner [21], to an MLN setting. OLED draws inspiration from the
VFDT (Very Fast Decision Trees) algorithm [10], whose online strategy is based on the
Hoeffding bound [16]. Given a random variable X with range in [0, 1] and an observed
mean X of its values after n independent observations, the Hoeffding Bound states that,

Online Learning of Weighted Relational Rules for Complex Event Recognition 7

with probability 1 — 4, the true mean X of the variable lies in an interval (X —e, X +¢),

in(1/6)
2n

OLED learns a rule r with a hill-climbing process, where literals are gradually added
to r’s body yielding specializations of r of progressively higher quality, which is as-
sessed by some scoring function GG, based on the positive and negative examples that a
rule entails. This strategy is common in ILP, where at each specialization step (addition
of aliteral), a number of candidate specializations of the parent rule are evaluated on the
entire training set and the best one is selected. OLED adapts this strategy to an online
setting, using the Hoeffding bound, as follows: Assume that after having evaluated r and
anumber of its candidate specializations on n examples, 1 is 7’s specialization with the
highest mean G-score G and 75 is the second-best one, i.e. AG = G(r1) — G(r2) > 0.
Then by the Hoeffding bound we have that for the true mean of the scores’ difference

AG it holds that AG > AG — ¢, with probability 1 — &, where ¢ = %. Hence, if

AG > €, then AG > 0, implying that 1 is indeed the best specialization, with proba-
bility 1 — §. In order to decide which specialization to select, it thus suffices to evaluate
the specializations on examples from the stream until AG > e. Each of these examples
is processed once, thus giving rise to a single-pass rule learning strategy.

Positive (resp. negative) examples in this setting are true (resp. false) instances of
target predicates, which are present in (resp. generated via the closed-world assump-
tion from) the incoming training interpretations. Such instances correspond to query
atoms in an MLN setting (see Section 3.1), therefore we henceforth refer to positive
and negative examples as true and false query atoms respectively.

The literals used for specialization are drawn from a bottom rule [8], denoted by L, a
most-constrained rule that entails a single true query atom. A bottom rule is usually too
restrictive to be used for classification and its purpose is to define a space of potentially
good rules, consisting of those that -subsume L. OLED moves through this search
space in a top-down fashion, starting from an empty-bodied rule head(L) < true and
considering at each time specializations that result by the addition of a fixed number of
literals from _L to the body of a parent rule (the default is one literal).

where € =

4.1 WoLED

Our approach is based on combining OLED’s rule learning technique with OSLa’s
weight learning strategy. Contrary to OSLa’s approach, where once a rule is gener-
ated, its structure remains fixed and the only way to improve its quality is by tuning
its weight, WoLED progressively learns both the structure of a rule and its weight, by
jointly optimizing them together. To this end, a rule is gradually specialized via the
online hill-climbing strategy described earlier, while constantly updating the weight of
each such specialization. Given a rule r and a set of r’s specializations .S,,, WoLED
learns weights for r and each r' € S,., and uses Hoeffding tests to identify over time,
arule ; € S, of higher quality, as assessed by a combination of r1’s structure and
weight. Once that happens, 7 is replaced by r; and the process continues for as long
as new specializations of ry improve its quality. To learn weights, WoLED replaces
OLED’s crisp logical inference with MAP inference and uses OSLa’s mistake-driven

8 N. Katzouris et al.

Background Knowledge Training Stream

holdsAt(F, T + 1) <+
initiatedAt(F, T').

MAP Inference
Theory
Expansion
Weights Update
Hoeffding Tests/Rule
Expansion

Fig. 1: Tllustration of WOLED’s high-level strategy.

Training Interpretation It
holdsAt(F, T + 1) +
holdsAt(F, T),
not terminatedAt(F, T').

holdsAt(move(idy , idz), 10)
happensAt(walking(id;), 9)
happensAt(walking(idz), 9)
coords(idy, 28,104, 9)
coords(idz, 42,84, 9)
direction(idy, 212, 9)
direction(idg, 78, 9)

Mode Declarations

head(initiatedAt(move(+id, +id), +time))
head(terminatedAt(move(+id, +id), +time))
body(happensAt(walking(+id, +id), +time))
body(not happensAt(walking(+id, +id), +time))
body(dist LessThan(+id, +id, #dist, +time))
body(dir LessThan(+id, +id, #dist, +time))

Training Interpretation I,/

Current MLN Theory H;:

not holdsAt(move(idy, idg), 100)
happensAt(walking(id;), 99)
happensAt(walking(idz), 99)
coords(idy , 205, 23, 99)
coords(idg, 462, 24, 99)
direction(idy, 23, 99)
direction(idz, 798, 99)

1.845 initiatedAt(move(X, Y), T) +
happensAt(walking(X), T'),
happensAt(walking(Y), T),
distLessThan(X, Y, 84, T)

0.865 terminatedAt(move(X,Y), T) <
happensAt(inactive(X), T),
not distLessThan(X,Y, 34, T)

weight learning technique described in Section 3.1, which updates a rule’s weight based
on the query atoms that the rule misclassifies in the MAP-inferred state.

WOLED’s high-level strategy is illustrated in Figure 1. At each point in time WoLED
maintains a theory H; = {ry,...,r,}, and for each rule r;, a set of current specializa-
tions {r},...,r"} and an associated bottom rule L,.,. At time ¢, WoLED receives the
t-th training interpretation I; and it subsequently goes through a five-step process. In
the first step it performs MAP inference on Iy, using the current theory H; and the back-
ground knowledge. The MAP-inferred interpretation is checked for FN query atoms. If
such an atom « exists, meaning that no existing rule in H; entails it, WoLED proceeds
to a “theory expansion” step, where it starts growing a new rule ;41 to account for that.
This amounts to using the FN atom « as a “seed” to generate a bottom rule 1, , and
adding to H the empty-bodied rule head(L,,,,) < true. From that point on this rule
is gradually specialized using literals from L., . The generation of L, , is guided by
a set of mode declarations [8] (see Figure 1), a form of language bias specifying the
signatures of literals that are allowed to be placed in the head or the body of a rule, in
addition to the types of their arguments (e.g. time, or id in the declarations of Figure
1) and whether they correspond to variables or constants (indicated respectively by “+”
and “#” in the declarations of Figure 1).

After a potential theory expansion a weight update step follows, where the weights
of each rule »r € H; and the weights of each one of its current specializations are
updated, based on their mistakes on the MAP-inferred state generated previously. A
Hoeffding test for each rule r € H; follows, and if a test succeeds for some rule r, it
is “expanded”, i.e. ’s structure and weight are replaced by the ones of its best-scoring
specialization, 7;. The final step is responsible for pruning the current theory, i.e. re-

Online Learning of Weighted Relational Rules for Complex Event Recognition 9

Algorithm 1 WoLED

Input: Z: A stream of training interpretations; M: Mode declarations; B: Background knowl-
edge; G: Rule evaluation function; d5,: Confidence for the Hoeffding test; 1, A, d,: AdaGrad’s
parameters; d: Specialization depth; N, in: Warm-up period; Scoremn: G-score quality thresh-
old; H: A (possibly empty) set of first order rules.

1: foreach I € 7 do
2: Hactive = {r € H : r has been evaluated on at least Ny, examples}

3 Iyap := the MAP-inferred interpetation of Hctive U B on 1.
4 for each true query atom o € I\ Ipyap do
S: Generate a bottom rule L from I U B, using the mode declarations and « as a seed atom.
6: r:= head(Ll) «+ true
7: TPs(r), FPs(r), FNs(r), Subgradients(r) :== 0; L, :== L
8: H <+ HU{r}
9: for eachr ¢ H do
10: pa(r) := {head(r) < body(r) A D | D C body(L,) and |D| < d}
11: UpdateWeights(r, Imap)
12: for each v’ € py(r) do
13: UpdateWeights(r’, Inap)
14: AG := G(r1) — G(r2), where 71,72 € pa(r) are r’s best and second-best specializations.
15: €:1=4/ %, where V. is the sum of r’s groundings so far.
16: € := the mean value of € = , / % observed so far any rule 7.
17: if [AG > cor AG < ¢ < € and G(r1) > G(r) then
18: Replace r by 1.
19: N, := the average number of O(E%lna—lh) examples for which the Hoeffding test
has succeeded so far during the learning process.
20: if is unchanged for a period longer than N and Scoremin — G (r) > € then
21: Remove r from H.
22: return H

moving low-quality rules. The current version of the weighted theory is output and the
training loop continues (see Figure 1).

We next go into some details of WoLED’s functionality, using the pseudocode in
Algorithm 1. The input to Algorithm 1 consists of the background knowledge, a rule-
scoring function G, based on the true positive (7P), false positive (FP) and false neg-
ative (FN) examples entailed by a rule, AdaGrad’s parameters 7, d,, A, discussed in
Section 3.1, the confidence parameter for the Hoeffding test d;, and a set of mode dec-
larations. Additionally, a minimum G-score value for acceptable rules, a “warm-up”
parameter N,,,;,, and a “specialization depth” parameter d, to be explained shortly.

The MAP-inferred state is generated in lines 2-3 of Algorithm 1, using the active
fragment of the theory. The latter consists of those rules in the theory that have been
evaluated on at least NV, examples (line 2), where N,,;, is the input “warm-up” pa-
rameter. This is to avoid using rules which are too premature and useless for inference,
such as an empty-bodied rule that has just been created.

10 N. Katzouris et al.

Algorithm 2 UpdateWeights(r,n, 04, A\, Infap, ITRUE):

Input: r: a rule; n, A, §,: AdaGrad’s learning rate, regularization parameter and smoothness
parameter respectively; Ipap, ITrur: the MAP-inferred state and the true state respectively for
a training interpretation /.

1: w, := the weight of rule r.
2: Ag, := the difference in true groundings of rule r in the inferred state Ias 4 p and
the true state ITruE.

Subgradients(r) < Subgradients(r) 4+ (Agr)?.
Cr := o + +/Subgradients(r)
wr < sign(wr — & Agr) maz{0, |wr — & Agr| = A g}

TPs(r) < TPs(r) 4+ [{a € Inap N ITruE : « is a grounding of head(r)}|.
FPs(r) < FPs(r) + |{a € Inap \ ITrur : o is a grounding of head(r)}|.
FNs(r) < FNs(r) + |[{a € Itrue ~ Inap : «is a grounding of head(r)}|.

e A A T

In lines 4-8 of Algorithm 1, new rules are generated for each FN atom in the MAP-
inferred state, as described earlier. In addition to its corresponding bottom rule to draw
literals for specialization, each rule is also equipped with a number of counters, which
accumulate the 7P, FP and FN instances entailed by the rule over time, to use for cal-
culating its G-score; and an accumulator, denoted by Subgradients(r), which is meant
to store the history (sum) of the rule’s mistakes throughout the learning process (see
the term C} in Equation (1)). As explained in Section 3.1, a rule’s mistakes w.r.t. each
incoming interpretation is a coordinate in the the subgradient vector of AdaGrad’s loss
function (hence the name “Subgradients(r)” for their accumulator) and they affect the
magnitude of a rule’s weight update. Therefore, Subgradients(r) is used for updating
r’s weight with AdaGrad.

Updating the weights of each rule » € H, as well as the weights of r’s candidate
specializations follows, in lines 9-13 of Algorithm 1 (r’s specializations are denoted
by paq(r) (line 10), where d is the specialization depth parameter mentioned earlier,
controlling the “depth” of allowed specializations, which are considered at each time).
The weight-update process is presented in Algorithm 2. It uses AdaGrad’s strategy dis-
cussed in Section 3.1. The difference between r’s true groundings in the true state and
the MAP-inferred one is first calculated (line 2), it’s square is added to r’s Subgradients
accumulator (line 3 — see the C’f term in Equation (1), Section 3.1) and then r’s weight is
updated (line 5). Algorithm 2 is also responsible for updating the TP, FP, FN counters
for a rule r, which are used to calculate its G-score.

The Hoeffding test follows to decide if a rule should be specialized (lines 14-18,
Algorithm 1). A rule is specialized either if the test succeeds (AG > ¢), or if a tie-
breaking condition is met (AG' < € < T), where T is a threshold set to the mean value of
€ observed so far. Also, to ensure that no rule r is replaced by a specialization of lower
quality, we demand that G(r;) > G(r), where r; is 7’s best-scoring specialization
indicated by the Hoeffding test.

The final step is responsible for removing rules of low quality (lines 19-21, Al-
gorithm 1). A rule is removed if it remains unchanged (is not specialized) for a sig-
nificantly large period of time, set to the average number of O(e%lni) examples for
which the Hoeffding test has succeeded so far, and there is enough confidence, via an

Online Learning of Weighted Relational Rules for Complex Event Recognition 11

additional Hoeffding test, that its mean G-score is lower than a minimum acceptable
G-score Scoreny,.

5 Experimental Evaluation

We present an experimental evaluation of WoLED on CAVIAR, a benchmark dataset for
activity recognition (see Section 3 for CAVIAR’s description). All experiments were
conducted on Debian Linux machine with a 3.6GHz processor and 16GB of RAM. The
code and the data to reproduce the experiments are available online’. WoLED is im-
plemented in Scala, using the Clingo answer set solver® for grounding and the Ipsolve’
Linear Programming solver for probabilistic MAP-inference, on top of the LoMRF®
platform, an implementation of MLN. The OSL« version to which we compare in these
experiments also relies on Ipsolve, but uses LOMRF’s custom grounder.

5.1 Comparison with Related Online and Batch Learners

In our first experiment we compare WoLED with (i) OSL« and OSL [18], discussed in
Section 3.1; (ii) The crisp version of OLED; (iii) ECyisp, a hand-crafted set of crisp rules
for CAVIAR; (iv) MaxMargin, an MLN consisting of EC.isp’s rules, with weights opti-
mized by the the Max-Margin weight learning method of [17]; (v) XHAIL, a batch, crisp
ILP learner using a combination of inductive and adbuctive logic programming.The
rules used by ECcyisp and MaxMargin may be found in [30].

MaxMargin was selected because it was shown to achieve good results on CAVIAR
[30], while XHAIL was selected because it is one of the few existing ILP algorithms
capable of learning theories in the EC.

A fragment of the CAVIAR dataset has been used in previous work to evaluate
OSLa and MaxMargin’s performance [27,30]. To compare to these approaches we
therefore used this fragment in our first experiment. The target complex events in this
dataset are related to two persons meeting each other or moving together and the train-
ing data consist of the parts of CAVIAR where these complex events occur. The frag-
ment dataset contains a total of 25,738 training interpretations. The results with OLED
were achieved using a significance parameter §, = 10~2 for the Hoeffding test, a rule
pruning threshold Score,,, (see also Algorithm 1) of 0.8 for meeting and 0.7 for mov-
ing and a warm-up parameter of N,,;, = 1000 examples. WoLED also used this param-
eter configuration, in addition to n = 1.0, A = 0.01, 6, = 1.0 for weight learning with
AdaGrad. These parameters were reported in [27] and were also used with OSLa/OSL.

The results were obtained using 10-fold cross validation and are presented in Table
2(a) in the form of precision, recall and f;-score. These statistics were micro-averaged
over the instances of recognized complex events from each fold.Table 2(a) also presents
average training times per fold for all approaches except ECcsp, Where there is no
training involved, average theory sizes for OLED, OSLca, and XHAIL, as well as the

Shttps://github.com/nkatzz/OLED

6 https://potassco.org/clingo/
"https://sourceforge.net/projects/lpsolve/
$https://github.com/anskarl/LoMRF

12 N. Katzouris et al.

Method Precision Recall F;-score Theory size Time (sec)

(a) Moving ECerisp 0.909 0.634 0.751 28 -
OLED 0.867 0.724 0.789 34 28
WoLED 0.882 0.835 0.857 30 59

OSLa 0.837 0.590 0.692 3316 1300

OSL - - - - > 25 hrs

MaxMargin 0.844 0.941 0.890 28 1692

XHAIL 0.779 0914 0.841 14 7836
Meeting ECeisp 0.687 0.855 0.762 23 —
OLED 0.947 0.760 0.843 31 22
WoLED 0.892 0.888 0.889 29 52

OSLa 0.902 0.863 0.882 1231 180

OSL - - - - > 25 hrs

MaxMargin 0919 0.813 0.863 23 1133

XHAIL 0.804 0.927 0.861 15 7248
(b) Moving OLED 0.682 0.787 0.730 38 63
WoLED 0.783 0.821 0.801 51 108
ECucrisp 0.721 0.639 0.677 28 -
Meeting OLED 0.701 0.886 0.782 41 43
WoLED 0.808 0.877 0.841 56 98
ECucrisp 0.644 0.855 0.735 23 -

Table 2: Experimental results on (a) the CAVIAR fragment of [30] (top) and (b) the
complete CAVIAR dataset (bottom).

fixed theory size of EC.isp and MaxMargin. The reported theory sizes are in the form
of total number of literals in a theory. The online methods were allowed only a single-
pass over the training data.

WOLED achieves the best Fj-score for meeting and the second-best F-score for
moving, right after the batch weight optimizer MaxMargin. This is a notable result.
Moreover, this gain in predictive accuracy comes with a tolerable decrease in effi-
ciency of approximately half a minute, as compared to OLED’s training times, which
are the best among all learners. This extra overhead in training time for WoLED is
due to the cost of the probabilistic MAP-inference, which replaces OLED’s crisp log-
ical inference to allow for weight optimization. Regarding theory sizes, WoLED out-
puts hypotheses comparable in size with the hand-crafted knowledge base, and much
more compressed as opposed to OSL«. This is another notable result. XHAIL learns
the most compressed hypotheses, since it is a batch learner, which also explains its
increased training times.MaxMargin, also has high training times, paying the price of
batch (weight) optimization.

OSL was unable to process the dataset within 25 hours, at which time training was
terminated. The reasons for that are related to it being unable to take advantage of the
background knowledge, thus it is practically unable to learn with the Event Calculus

Online Learning of Weighted Relational Rules for Complex Event Recognition 13

1 1
0.9 0.9
08 058 h[/’—:?
0.7 0.7 ¥ h/
g 0.6 9 06
2 05 § 0.5
o o 04
w04 -=-0Sla w —=-0SlLa
0.3 0.3
02 02 OLED
o OLED o1
o Lo ol mmom o
0) 4 6 s 0 12 14 0 2 4 6 8 10 12 14
Number of Time Points(x1000) Number of Time Points (x1000)
(a) moving (b) meeting

Fig. 2: Online holdout evaluation on CAVIAR.

[27]. OSL« overcomes OSL’s difficulties, but learns unnecessarily large theories, which
differ in size by several orders of magnitude from all others learners’. In turn, this affects
OSLec’s training times, which are also increased. In contrast, WoLED achieves improved
predictive accuracy and compressed theories with minimal training overhead.

Figure 2 presents the holdout evaluation [15] for the online learners compared in this
experiment. Holdout evaluation consists of assessing the quality of an online learner on
a holdout test set, at regular time intervals during learning, thus obtaining a learning
curve of its performance over time. Figure 2 presents average F}-scores, obtained by
performing holdout evaluation on each fold of the tenfold cross-validation process: at
each fold, each learner’s theory is evaluated on the fold’s test set every 1000 time points
and the F}-scores from each evaluation point are averaged over all ten folds.

WOoLED and OLED have an adequate performance, with relatively smooth learning
curves, while they eventually converge to stable theories of acceptable performance.
Moreover, WoLED outperforms both OLED and OSL« in most of the evaluation process.

In contrast to the online behaviour of WoLED and OLED, OSLa’s performance ex-
hibits abrupt fluctuations. For moving in particular, OSLa’s average [-score reaches
its peak (0.87) after processing data from approximately 10,000 time points, and then
it drops significantly until the final average [-score value of 0.69 reported in Table 2.
This behavior may be attributed to OSL«’s rule generation strategy. Contrary to WoLED,
which uses Hoeffding tests to select rules with significant heuristic value, OSLa greed-
ily adds new rules to the current theory, so as to locally improve its performance, with-
out taking into account the new rules’ quality on larger portions of the data. Overall,
this results in poor online performance, since rules with no quality guarantees on the
training set may be responsible for a large number of mistakes on unseen data, by e.g.
fitting the noise in the training data. OSLa relies solely on weight learning to minimize
the weights of low-quality rules in the long run. However, OSL«a’s holdout evaluation
indicates that in principle this requires larger training sets, since, at least in the case of
moving, OSLa’s theories exhibit no sign of convergence. On the other hand, OSLa’s in-

14 N. Katzouris et al.

0.86 9000

0.84 80001 g OLED-CAVIAR-1

7000 —o—WoLED-CAVIAR-1
OLED-CAVIAR-2
~»~WoLED-CAVIAR-2

0.82

o
S
S
S

—=-O0OLED-CAVIAR-2

—o—WoOLED-CAVIAR-2
OLED-CAVIAR-1

—>~WoLED-CAVIAR-1

0.76 X

2000
0.74

1000

0.72 0 4
0 2 4 6 8 10 12 0 2 4 6 8 10 12

Number of CAVIAR Copies Number of CAVIAR Copies

0.8

F1-Score

0.78

Time (sec x 1000)

Fig. 3: Evaluation on larger data volumes for the moving complex event.

creased training times reported in Table 2, due to the ever-increasing cost of maintaining
unnecessarily large theories, indicate that training on larger datasets is impractical.

5.2 Evaluation on Larger Data Volumes

In this section we evaluate WOLED on larger data volumes, starting with the entire
CAVIAR dataset, which consists of 282,067 interpretations, in contrast to 25,738 in-
terpretations in the CAVIAR fragment. Due to the increased training times of OSLa,
XHAIL and MaxMargin, we did not experiment with these algorithms. The target com-
plex events were meeting and moving as previously. The additional training data (i.e.
those not contained in the CAVIAR fragment) were negative instances for both complex
events (recall that the parts of CAVIAR where meeting and moving occur were already
contained in the CAVIAR fragment). This way, the dataset used in this experiment is
much more imbalanced than the one used in the previous experiment. The parameter
configuration for the two learners was as reported in Section 5.1. The results were ob-
tained via tenfold cross-validation and are presented in Table 2(b).

The average F1-score for both algorithms is decreased, as compared to the previous
experiment, due to the increased number of false positives, caused by the large num-
ber of additional negative instances. WoLED significantly outperforms OLED for both
complex events, at the price of a tolerable increase in training times.

To test our approach further we used larger datasets generated from CAVIAR in two
different settings. In the first setting, to which we henceforth refer as CAVIAR-1, we
generated datasets by sequentially appending copies of the original CAVIAR dataset,
incrementing the time-stamps in each copy. Therefore, training with datasets in the
CAVIAR-1 setting amounts to re-iterating over the original dataset a number of times.
In the second setting, to which we refer as CAVIAR-2, datasets were also obtained from
copies of CAVIAR, but this time the time-stamps in the data were left intact and each
copy differed from the others in the constants referring to the tracked entities (persons,

Online Learning of Weighted Relational Rules for Complex Event Recognition 15

objects) that appear in simple and complex events. In each copy of the dataset, the
coordinates of each entity p differ by a fixed offset from the coordinates of the entity
of the original dataset that p mirrors. The copies were “merged”, grouping together by
time-stamp the data from each copy. Therefore, the number of constants in each training
interpretation in datasets of the CAVIAR-2 setting is multiplied by the number of copies
used to generate the dataset. We performed experiments on datasets obtained from 2, 5,
8 and 10 CAVIAR copies for both settings. The target concept was moving and on each
dataset we used tenfold cross-validation to measure Fj-scores and training times.

The results are presented in Figure 3. F-scores improve with larger data volumes
for both learners, slightly more so with the datasets in the CAVIAR-2 setting, while
WOLED achieves better I -scores than OLED thanks to weight learning. Training times
increase slowly with the data size in the “easier” CAVIAR-1 setting, where both learn-
ers require 8-10 minutes on average to learn from the largest dataset in this setting. In
contrast, training times increase abruptly in the harder CAVIAR-2 setting, where learn-
ing from the largest dataset requires more than 2.5 hours on average for both learners.
This is due to the additional domain constants in the datasets of the CAVIAR-2 setting,
which result in exponentially larger ground theories.

6 Conclusions and Future Work

We presented an algorithm for online learning of event definitions in the form of Event
Calculus theories in the MLN semantics. We extended an online ILP algorithm to a
statistical relational learning setting via online weight optimization. We evaluated our
approach on an activity recognition application, showing that it outperforms both its
crisp predecessor and competing algorithms for online learning in MLN. There are sev-
eral directions for further work. We plan to improve scalability using parallel/distributed
learning, along the lines of [22]. We also plan to evaluate different algorithms for online
weight optimization and develop methodologies for online hyper-parameter adaptation.

References

1. E. Alevizos, A. Skarlatidis, A. Artikis, and G. Paliouras. Probabilistic complex event recog-
nition: A survey. ACM Computing Surveys, to appear, 2018.

2. A. Artikis, M. Sergot, and G. Paliouras. An event calculus for event recognition. Knowledge
and Data Engineering, IEEE Transactions on, 27(4):895-908, 2015.

3. A. Artikis, A. Skarlatidis, F. Portet, and G. Paliouras. Logic-based event recognition. The
Knowledge Engineering Review, 27(4):469-506, 2012.

4. D. Athakravi, D. Corapi, K. Broda, and A. Russo. Learning through hypothesis refinement
using answer set programming. In /ILP-2013, pages 31-46. Springer, 2013.

5. D. Corapi, A. Russo, and E. Lupu. Inductive logic programming as abductive search. In
ICLP-2010, pages 54-63, 2010.

6. D. Corapi, D. Sykes, K. Inoue, and A. Russo. Probabilistic rule learning in nonmonotonic
domains. In International Workshop on Computational Logic in Multi-Agent Systems, pages
243-258. Springer, 2011.

7. G. Cugola and A. Margara. Processing flows of information: From data stream to complex
event processing. ACM Computing Surveys (CSUR), 44(3):15, 2012.

16

e}

10.

11.

12.

14.
15.

16.

17.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.
29.

30.

31.

N. Katzouris et al.

. L. De Raedt. Logical and relational learning. Springer Science & Business Media, 2008.
. L. De Raedt, K. Kersting, S. Natarajan, and D. Poole. Statistical relational artificial intelli-

gence: Logic, probability, and computation. Synthesis Lectures on Artificial Intelligence and
Machine Learning, 10(2):1-189, 2016.

P. Domingos and G. Hulten. Mining high-speed data streams. In ACM SIGKDD, pages
71-80. ACM, 2000.

S. Dragiev, A. Russo, K. Broda, M. Law, and C. Turliuc. An abductive-inductive algorithm
for probabilistic inductive logic programming. In Proceedings of the 26th International
Conference on Inductive Logic Programming (Short papers), London, UK, 2016., pages 20—
26, 2016.

A. Dries and L. De Raedt. Towards clausal discovery for stream mining. In ILP-2009, pages
9-16. Springer, 2009.

. J. Duchi, E. Hazan, and Y. Singer. Adaptive subgradient methods for online learning and

stochastic optimization. Journal of Machine Learning Research, 12(Jul):2121-2159, 2011.
J. Gama. Knowledge discovery from data streams. CRC Press, 2010.

J. Gama, R. Sebastido, and P. P. Rodrigues. On evaluating stream learning algorithms. Ma-
chine learning, 90(3):317-346, 2013.

W. Hoeffding. Probability inequalities for sums of bounded random variables. Journal of
the American statistical association, 58(301):13-30, 1963.

T. N. Huynh and R. J. Mooney. Max-margin weight learning for markov logic networks. In
Joint European Conference on Machine Learning and Knowledge Discovery in Databases,
pages 564-579. Springer, 2009.

. T. N. Huynh and R. J. Mooney. Online structure learning for markov logic networks. In

ECML-2011, pages 81-96. Springer, 2011.

N. Katzouris. Scalable relational learning for event recognition. PhD Thesis, University of
Athens, http://users.iit.demokritos.gr/ nkatz/papers/nkatz-phd.pdf, 2017.

N. Katzouris, A. Artikis, and G. Paliouras. Incremental learning of event definitions with
inductive logic programming. Machine Learning, 100(2-3):555-585, 2015.

N. Katzouris, A. Artikis, and G. Paliouras. Online learning of event definitions. Theory and
Practice of Logic Programming, 16(5-6):817-833, 2016.

N. Katzouris, A. Artikis, and G. Paliouras. Parallel online learning of event definitions. In
ILP, 2017.

R. Kowalski and M. Sergot. A logic-based calculus of events. New Generation Computing,
4(1):67-95, 1986.

M. Law, A. Russo, and K. Broda. Iterative learning of answer set programs from context
dependent examples. Theory and Practice of Logic Programming, 16(5-6):834-848, 2016.
N. Littlestone. Learning quickly when irrelevant attributes abound: A new linear-threshold
algorithm. Machine learning, 2(4):285-318, 1988.

A. Margara, G. Cugola, and G. Tamburrelli. Learning from the past: automated rule genera-
tion for complex event processing. In Proceedings of the 8th ACM International Conference
on Distributed Event-Based Systems, pages 47-58. ACM, 2014.

E. Michelioudakis, A. Skarlatidis, G. Paliouras, and A. Artikis. Osla: Online structure learn-
ing using background knowledge axiomatization. In ECML, pages 232-247. Springer, 2016.
0. Ray. Nonmonotonic abductive inductive learning. J. Applied Logic, 7(3):329-340, 2009.
M. Richardson and P. Domingos. Markov logic networks. Machine learning, 62(1-2):107—
136, 2006.

A. Skarlatidis, G. Paliouras, A. Artikis, and G. Vouros. Probabilistic event calculus for event
recognition. ACM Transactions on Computational Logic (TOCL), 16(2):11, 2015.

A. Srinivasan and M. Bain. An empirical study of on-line models for relational data streams.
Machine Learning, 106(2):243-276, 2017.

